Высшая математика для чайников, или с чего начать? Математический анализ Мат анализ функции

Сидите в темноте и читаете мои статьи? Поберегите зрение. Если у Вас есть любимое место, скорей всего это кровать, то настенные бра с доставкой по Украине на сайте могут быть подходящим вариантом. Читайте при свете, и берегите зрение.

Всё должно быть изложено так просто, как только возможно, но не проще.
Альберт Эйнштейн

Наше путешествие начнётся со знакомства с вымышленным персонажем, которого мы назовём Джоном Доу. Он является среднестатистическим работником, которого можно легко найти в любом городе мира. Практически каждый день Джон просыпается под громкие звуки будильника и едет на работу на своей машине. Он поднимается на лифте в свой кабинет, где загружает компьютер и вводит логин и пароль. Джон делает все эти вещи без малейшего понятия о том, как они работают.

Возможно, ему было бы интересно узнать о там, как устроены и функционируют устройства и приборы, которыми он пользуется ежедневно, тем не менее, у него нет ни времени, ни сил, чтобы заниматься этим. Он считает автомобили, лифты, компьютеры и будильники совершенно разными и сложными механизмами, которые не имеют между собой ничего общего. По мнению Джона, на то, чтобы понять, как работает каждый из них, нужны годы изучений.

Некоторые люди смотрят на вещи несколько иначе, чем наш Джон Доу. Они знают, что электродвигатели в лифтовых установках очень похожи на автомобильные генераторы переменного тока.

Они знают, что программируемый логический контроллер, управляющий электрическим двигателем, который отвечает за перемещение лифта, очень похож на рабочий компьютер Джона Доу. Они знают, что на фундаментальном уровне принцип работы программируемого логического контроллера, будильника и компьютера основывается на относительно простой транзисторной теории. То, что Джон Доу и среднестатистический человек считают невероятно сложным, для хакера является самым обычным использованием простых механических и электрических принципов. Проблема заключается в том, как эти принципы применяются. Абстрагирование фундаментальных принципов от сложных идей позволяет нам понять и упростить их способом, который воздаёт должное импровизированному совету Альберта Эйнштейна, процитированному выше.

Многие из нас рассматривают математический анализ как нечто сложное. (Таким же Джон Доу считает принцип устройства и функционирования различных механизмов.) Вы видите нагромождение сложных, запутанных вещей. Для того чтобы понять их, Вам нужно немало времени и усилий. Но что, если мы скажем Вам, что математический анализ (исчисление) не такой уж и сложный, каковым кажется на первый взгляд, равно как и большинство механизмов? Что есть несколько основных принципов, которые каждому дано понять, и как только Вы это сделаете, Вам откроется новый взгляд на мир и то, как он устроен?

В обычном учебнике по математическому анализу содержится около одной тысячи страниц. Типичный Джон Доу увидит в нём тысячу трудных для понимания и изучения вещей, а хакер – два основных принципа (производная и интеграл) и 998 примеров этих принципов. Мы вместе попытаемся разобраться, что это за принципы. Основываясь на работе, проделанной Майклом Старбёрдом, профессором Техасского университета в Остине, мы будем использовать повседневные примеры, которые каждый сможет понять. Математический анализ раскрывает особую красоту нашего мира – красоту, которая возникает тогда, когда Вы способны наблюдать её динамически, а не статически. Мы надеемся, что у Вас всё получится.

Перед тем как мы начнём, хотелось бы кратко пройтись по истории возникновения математического анализа, корни которого лежат в очень тщательном разборе изменений и движения.

Парадокс Зенона

Зенон Элейский – философ, живший в IV веке до нашей эры. Он выдвинул несколько тонких, но глубоких парадоксов, два из которых, в конечном итоге, привели к зарождению математического анализа. Для того чтобы решить парадоксы Зенона, человечеству понадобилось более двух тысяч лет. Как Вы понимаете, это было нелегко. Трудности в значительной степени были связаны с идеей бесконечности. Что представляет собой проблема бесконечности с математической точки зрения? В XVII веке Исааку Ньютону и Готфриду Лейбницу удалось решить парадоксы Зенона и создать математический анализ. Давайте внимательно рассмотрим эти парадоксы, чтобы понять, почему вокруг них было столько шумихи.

Стрела

Представьте летящую в воздухе стрелу. Мы можем с большой уверенностью сказать, что стрела находится в движении. А теперь рассмотрим стрелу в определённый момент времени. Она больше не движется, а пребывает в состоянии покоя. Но мы точно знаем, что стрела находится в движении, тогда каким образом она может пребывать в состоянии покоя?! В этом и заключается суть данного парадокса. Он может показаться глупым, однако в действительности это очень сложная концепция, которую следует рассматривать с математической точки зрения.

Позднее мы выясним, что имеем дело с понятием мгновенной скорости изменения, которое мы свяжем с идеей одного из двух принципов математического анализа (исчисления) – производной. Это позволит нам вычислить скорость движения стрелы в определённый момент времени – то, что человечеству не удавалось сделать более двух тысячелетий.

Дихотомия

Давайте снова рассмотрим эту же стрелу. На этот раз представим, что она летит в нашу сторону. Зенон утверждал, что мы не должны двигаться, поскольку стрела никогда не сможет попасть в нас. Представьте, что после того как стрела оказалась в воздухе, ей необходимо преодолеть половину расстояния между луком и мишенью. Как только она достигнет определённой точки на полпути, ей снова будет нужно преодолеть половину расстояния – на этот раз между данной точкой и целью. Представьте себе, что мы будем продолжать так делать. Стрела, таким образом, постоянно преодолевает половину расстояния между началом отсчёта и мишенью. Учитывая это, можно сделать вывод, что стрела никогда не сможет попасть по нам! В реальной жизни стрела, в конечном счёте, достигнет цели, заставив нас гадать над смыслом парадокса.

Как и в случае с первым парадоксом, мы позднее рассмотрим, как решить данную проблему при помощи одного из принципов математического анализа – интеграла. Интеграл позволяет нам рассматривать концепцию бесконечности как математическую функцию. Он является чрезвычайно мощным инструментом, по мнению учёных и инженеров.

Два основных принципа математического анализа

Суть двух фундаментальных принципов математического анализа можно продемонстрировать, применив их для решения парадоксов Зенона.

Производная. Производная – это метод, который позволит нам рассчитать скорость полёта стрелы в парадоксе «Стрела». Мы сделаем это, проанализировав положение стрелы через последовательно уменьшающиеся промежутки времени. Точная скорость стрелы станет известна, когда время между измерениями окажется бесконечно малым.

Интеграл. Интеграл – это метод, который позволит нам вычислить положение стрелы в парадоксе «Дихотомия». Мы сделаем это, проанализировав скорость движения стрелы через последовательно уменьшающиеся промежутки времени. Точное положение стрелы станет нам известно, когда время между измерениями окажется бесконечно малым.

Между производной и интегралом нетрудно заметить некоторое сходство. Обе величины рассчитываются в ходе анализа положения или скорости стрелы через постепенно уменьшающиеся временные интервалы. Позже мы выясним, что интеграл и производная, по сути, являются двумя сторонами одного керамического конденсатора.

Почему мы должны изучать основы математического анализа?

Всем нам известен Закон Ома, который связывает силу тока, напряжение и сопротивление в одно простое уравнение. Сейчас давайте рассмотрим «Закон Ома» на примере конденсатора. Сила тока конденсатора зависит от напряжения и времени. Время в данном случае является критической переменной и должно учитываться в любом динамическом событии. Математический анализ позволяет нам понять и оценить то, как вещи меняются с течением времени. В случае с конденсатором, сила тока равна ёмкости, помноженной на вольты в секунду, или i = C(dv/dt), где:

i – сила тока (мгновенная);
C – ёмкость, которая измеряется в фарадах;
dv – изменение напряжения;
dt – изменение времени.

В данной цепи в конденсаторе нет электрического тока. Вольтметр будет показывать напряжение аккумулятора, а амперметр – ничего. Напряжение не станет меняться до тех пор, пока потенциометр будет оставаться нетронутым. В таком случае i = C(0/dt) = 0 апмер. Но что произойдёт, если мы начнём настраивать потенциометр? Судя по уравнению, в конденсаторе появится результирующая сила тока. Эта сила тока будет зависеть от изменения напряжения, которое связано с тем, насколько быстро двигается потенциометр.

Эти графики показывают связь между напряжением в конденсаторе, силой тока и скоростью, с которой мы крутим потенциометр. Сначала мы делаем это медленно. Увеличение скорости приводит к изменению напряжения, что, в свою очередь, провоцирует резкое увеличение силы тока. На всех этапах сила тока в конденсаторе пропорциональна скорости изменения напряжения в нём.

Математический анализ, или, если быть точнее, производная, даёт нам возможность определить скорость изменений, чтобы мы точно знали значение силы тока в конденсаторе в определённый момент времени. Аналогичным образом мы можем вычислить мгновенную скорость движения стрелы Зенона. Это невероятно мощный инструмент, который обязан быть в Вашем арсенале.

Материал подготовлен специально для сайт - по статье сайта hackaday.com

P.S. Меня зовут Александр. Это мой личный, независимый проект. Я очень рад, если Вам понравилась статья. Хотите помочь сайту? Просто посмотрите ниже рекламу, того что вы недавно искали.

Copyright сайт © - Данная новость принадлежит сайт, и являются интеллектуальной собственностью блога, охраняется законом об авторском праве и не может быть использована где-либо без активной ссылки на источник. Подробнее читать - "об Авторстве"

Вы это искали? Быть может это то, что Вы так давно не могли найти?


«…если бы мне пришлось создавать механизм с единственной целью разрушить природное любопытство ребенка и его любовь к моделированию, вряд ли бы у меня получилось лучше, чем это уже реализовано - у меня бы просто не хватило фантазии, чтобы тягаться с такими бесчувственными, унылыми идеями, которые воплощены в современных методах изучения математики».

Представьте изучение изобразительного искусства так: Детки, никакого рисования в детском садике. Вместо этого, давайте-ка изучим химию лакокрасочных изделий, физику света и анатомию глаза. После 12 лет изучения этих аспектов, если дети (точнее уже подростки) всё еще не возненавидят искусство, они смогут начать рисовать самостоятельно. В конечном итоге, они теперь владеют полноценным фундаментом для того, чтобы начать уважать искусство. Верно?

Также и с поэзией. Представьте изучение этой цитаты (формулы):

«Но главное: будь верен сам себе; Тогда, как вслед за днем бывает ночь, Ты не изменишь и другим.» -Вильям Шекспир, Гамлет

Это элегантный способ сказать «будь собой» (и если это означает непочтительно писать о математике, пусть будет так). Но если бы мы рассматривали поэзию на уроке математики, вместо поиска смысла мы бы занялись подсчётом количества слогов, анализировали пятистопный ямб, разметкой существительных, глаголов и прилагательных.

Математика и поэзия - это как разные способы пояснить, охарактеризовать одно и то же. Формулы - это средства к достижению цели, способ выражения математической истины.

Мы забыли, что математика оперирует идеями, это не машинальное маниппулирование формулами, которые выражают эти идеи.

Ну это всё понятно, так в чем же твоя великая мысль?

Вот, что я не буду делать: я не буду пересказывать уже написанные учебники. Если вам нужны ответы здесь и сейчас, есть масса вебсайтов , видеоуроков и 20-минуток в помощь.

Вместо этого давайте освоим основные положения матанализа. Уравнений недостаточно - я хочу моментов озарения, чтобы вы действительно видели их смысл и понимали язык математики.

Формальный математический язык - это просто способ коммуникации. Графики, информативные анимированные модели и разговор простым языком могут дать больше знаний, чем целая страница заумных доказательств.

Но матанализ - это сложно!

Я думаю, что любой человек сможет понять основные положения матанализа. Нам не обязательно быть поэтами, чтобы наслаждаться произведениями Шекспира.

Вам будет гораздо проще, если вы знаете алгебру и интересуетесь математикой. Не так давно, чтение и письмо были работой специально обученных писцов. А сегодня это может сделать любой 10-летний ребенок. Почему?

Потому что мы этого ожидаем. Ожидания играют огромную роль в развитии возможностей. Так что ожидайте, что матанализ - это просто еще один предмет. Некоторые люди доходят до мельчайших подробностей (писатели/математики). Но остальные из нас могут просто восторгаться происходящим и попытаться его понять. Я бы хотел, чтобы каждый освоил основные понятия матанализа и сказал «Вот это да!».

Так о чем же матанализ?

Это был простой пример, но вы уловили основную идею? Мы взяли диск, разделили его, и сложили части вместе немного другим путем. Матанализ показал, что диск и кольцо тесно связаны друг с другом: диск - это действительно набор колец. Это очень популярная тема в матанализе: Большие предметы состоят из более мелких предметов. И иногда именно с этими мелкими предметами работается проще и понятнее.

Немного о примерах

Множество примеров в матанализе основано на физике. Это, конечно, замечательно, но бывает сложно их воспринимать: честно, далеко не всегда удается держать в голове разные физические формулы вроде формулы скорости объекта.

Я предпочитаю начать с простых визуальных примеров, потому что именно так и работает наш мозг. Кольцо/круг, которое мы исследовали - вы бы могли смоделировать то же самое из нескольких отрезков трубок разного диаметра: разделить их, выровнять и уложить в грубый треугольник, чтобы убедиться, что математика действительно работает. С простой физической формулой такое вряд ли удастся провернуть.

Немного о математической строгости (для фанатиков этой науки)

Я чувствую, как математики-педанты жгут свои клавиатуры. Поэтому я вставлю всего несколько слов о «строгости». Знаете ли вы, что мы не учим матанализ способами, которыми его открыл Ньютон или Лейбниц? Они использовали интуитивные идеи «флюксии» и «бесконечно малых величин», которые были заменены пределами, потому что «Конечно, это работает на практике. Но работает ли это в теории?».

Мы создали сложные механические модели, чтобы «точно» доказать матанализ, но мы утратили интуитивное восприятие предмета в процессе таких доказательств.

Мы смотрим на сладость сахара с точки зрения химии мозга, вместо того, чтобы пояснять это языком науки «В сахаре много энергии. Ешьте его».

Я не хочу (и не могу) преподавать матанализ студентам или обучать ученых. Но будет ли плохо, если каждый сможет понимать матанализ на том «неточном» уровне, на котором его понимал Ньютон? Чтобы это также изменило мир для вас, как когда-то изменило для него?

Преждевременная концентрация на точности рассредоточивает учеников и делает математику сложной для изучения. Вот хороший пример: число е технически определено пределом, но открыто оно было именно с помощью интуитивной догадки о росте . Натуральный логарифм может выглядеть как интеграл, или время, которому нужно расти . Какие объяснения лучше помогут новичкам?

Давайте немного порисуем от руки, а в химию погрузимся уже по ходу дела. Приятных вычислений.

(P.S: Один любезный читатель создал анимированное слайд-шоу powerpoint , которое помогает презентовать эту идею более наглядно (лучше посмотреть ее в PowerPoint, там будут видны анимации). Спасибо!)

9 октября 2015

МАТЕМАТИЧЕСКИЙ АНАЛИЗ
раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и поверхностями (интегральное исчисление). Для задач математического анализа характерно, что их решение связано с понятием предела. Начало математическому анализу положил в 1665 И. Ньютон и (около 1675) независимо от него Г. Лейбниц, хотя важную подготовительную работу провели И. Кеплер (1571-1630), Ф. Кавальери (1598-1647), П. Ферма (1601-1665), Дж. Валлис (1616-1703) и И. Барроу (1630-1677). Чтобы сделать изложение более живым, мы будем прибегать к языку графиков. Поэтому читателю, возможно, будет полезно заглянуть в статью
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ,
прежде чем приступать к чтению данной статьи.
ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ
Касательные. На рис. 1 показан фрагмент кривой y = 2x - x2, заключенный между x = -1 и x = 3. Достаточно малые отрезки этой кривой выглядят прямыми. Иначе говоря, если Р - произвольная точка этой кривой, то существует некоторая прямая, проходящая через эту точку и являющаяся приближением кривой в малой окрестности точки Р, причем чем меньше окрестность, тем лучше приближение. Такая прямая называется касательной к кривой в точке Р. Основная задача дифференциального исчисления заключается в построении общего метода, позволяющего находить направление касательной в любой точке кривой, в которой касательная существует. Нетрудно представить себе кривую с резким изломом (рис. 2). Если Р - вершина такого излома, то можно построить аппроксимирующую прямую PT1 - справа от точки Р и другую аппроксимирующую прямую РТ2 - слева от точки Р. Но не существует единственной прямой, проходящей через точку Р, которая одинаково хорошо приближалась к кривой в окрестности точки P как справа, так и слева, следовательно касательной в точке P не существует.



На рис. 1 касательная ОТ проведена через начало координат О = (0,0). Угловой коэффициент этой прямой равен 2, т.е. при изменении абсциссы на 1 ордината увеличивается на 2. Если x и y - координаты произвольной точки на ОТ, то, удаляясь от О на расстояние х единиц вправо, мы удаляемся от О на 2y единиц вверх. Следовательно, y/x = 2, или y = 2x. Это уравнение касательной ОТ к кривой y = 2x - x2 в точке О. Необходимо теперь объяснить, почему из множества прямых, проходящих через точку О, выбрана именно прямая ОТ. Чем же прямая с угловым коэффициентом 2 отличается от других прямых? Существует один простой ответ, и нам трудно удержаться от искушения привести его, используя аналогию с касательной к окружности: касательная ОТ имеет с кривой только одну общую точку, тогда как любая другая невертикальная прямая, проходящая через точку О, пересекает кривую дважды. В этом можно убедиться следующим образом. Поскольку выражение y = 2x - x2 можно получить вычитанием х2 из y = 2x (уравнения прямой ОТ), то значения y для графика оказываются меньше знаний y для прямой во всех точках, за исключением точки x = 0. Следовательно, график всюду, кроме точки О, расположен ниже ОТ, и эта прямая и график имеют только одну общую точку. Кроме того, если y = mx - уравнение какой-нибудь другой прямой, проходящей через точку О, то обязательно найдутся две точки пересечения. Действительно, mx = 2x - x2 не только при x = 0, но и при x = 2 - m. И только при m = 2 обе точки пересечения совпадают. На рис. 3 показан случай, когда m меньше 2, поэтому справа от О возникает вторая точка пересечения.



То, что ОТ - единственная невертикальная прямая, проходящая через точку О и имеющая с графиком лишь одну общую точку, не самое главное ее свойство. Действительно, если мы обратимся к другим графикам, то вскоре выяснится, что отмеченное нами свойство касательной в общем случае не выполняется. Например, из рис. 4 видно, что вблизи точки (1,1) график кривой y = x3 хорошо аппроксимируется прямой РТ, имеющей однако, с ним более одной общей точки. Тем не менее, нам хотелось бы считать РТ касательной к этому графику в точке Р. Поэтому необходимо найти какой-то иной способ выделения касательной, чем тот, который так хорошо послужил нам в первом примере.



Предположим, что через точку О и произвольную точку Q = (h,k) на графике кривой y = 2x - x2 (рис. 5) проведена прямая (называемая секущей). Подставляя в уравнение кривой значения x = h и y = k, получаем, что k = 2h - h2, следовательно, угловой коэффициент секущей равен




При очень малых h значение m близко к 2. Более того, выбирая h достаточно близким к 0, мы можем сделать m сколь угодно близким к 2. Можно сказать, что m "стремится к пределу", равному 2, когда h стремится к нулю, или что предел m равен 2 при h, стремящемся к нулю. Символически это записывается так:

Тогда касательная к графику в точке О определяется как прямая, проходящая через точку О, с угловым коэффициентом, равным этому пределу. Такое определение касательной применимо в общем случае. Покажем преимущества этого подхода еще на одном примере: найдем угловой коэффициент касательной к графику кривой y = 2x - x2 в произвольной точке P = (x,y), не ограничиваясь простейшим случаем, когда P = (0,0). Пусть Q = (x + h, y + k) - вторая точка на графике, находящаяся на расстоянии h справа от Р (рис. 6). Требуется найти угловой коэффициент k/h секущей PQ. Точка Q находится на расстоянии



над осью х. Раскрывая скобки, находим:

Вычитая из этого уравнения y = 2x - x2, находим расстояние по вертикали от точки Р до точки Q:


Следовательно, угловой коэффициент m секущей PQ равен

Теперь, когда h стремится к нулю, m стремится к 2 - 2x; последнюю величину мы и примем за угловой коэффициент касательной PT. (Тот же результат получится, если h принимает отрицательные значения, что соответствует выбору точки Q слева от P.) Заметим, что при x = 0 полученный результат совпадает с предыдущим. Выражение 2 - 2x называется производной от 2x - x2. В старину производную также называли "дифференциальным отношением" и "дифференциальным коэффициентом". Если выражением 2x - x2 обозначить f(x), т.е.


то производную можно обозначить


Для того, чтобы узнать угловой коэффициент касательной к графику функции y = f(x) в какой-нибудь точке, необходимо подставить в f"(x) соответствующее этой точке значение х. Таким образом, угловой коэффициент f"(0) = 2 при х = 0, f"(0) = 0 при х = 1 и f"(2) = -2 при х = 2. Производную также обозначают у", dy/dx, Dхy и Dу. Тот факт, что кривая y = 2x - x2 вблизи данной точки практически неотличима от ее касательной в этой точке, позволяет говорить об угловом коэффициенте касательной как об "угловом коэффициенте кривой" в точке касания. Такие образом, мы можем утверждать, что угловой коэффициент рассматриваемой нами кривой имеет в точке (0,0) угловой коэффициент 2. Можно также сказать, что при x = 0 скорость изменения y относительно x равна 2. В точке (2,0) угловой коэффициент касательной (и кривой) равен -2. (Знак минус означает, что при возрастании x переменная y убывает.) В точке (1,1) касательная горизонтальна. Мы говорим, что кривая y = 2x - x2 имеет в этой точке стационарное значение.
Максимумы и минимумы. Мы только что показали, что кривая f(x) = 2x - x2 стационарна в точке (1,1). Так как f"(x) = 2 - 2x = 2(1 - x), ясно, что при x, меньших 1, f"(x) положительна, и, следовательно, y возрастает; при x, больших 1, f"(x) отрицательна, и поэтому y убывает. Таким образом, в окрестности точки (1,1), обозначенной на рис. 6 буквой М, значение у растет до точки М, стационарно в точке М и убывает после точки М. Такая точка называется "максимумом", поскольку значение у в этой точке превосходит любые его значения в достаточно малой ее окрестности. Аналогично, "минимум" определяется как точка, в окрестности которой все значения y превосходят значение у в самой этой точке. Может также случиться, что хотя производная от f (x) в некоторой точке и обращается в нуль, ее знак в окрестности этой точки не меняется. Такая точка, не являющаяся ни максимумом, ни минимумом, называется точкой перегиба. В качестве примера найдем стационарную точку кривой


Производная этой функции равна

И обращается в нуль при x = 0, х = 1 и х = -1; т.е. в точках (0,0), (1, -2/15) и (-1, 2/15). Если х чуть меньше -1, то f"(x) отрицательна; если х чуть больше -1, то f"(x) положительна. Следовательно, точка (-1, 2/15) - максимум. Аналогично, можно показать, что точка (1, -2/15) - минимум. Но производная f"(x) отрицательна как до точки (0,0), так и после нее. Следовательно, (0,0) - точка перегиба. Проведенное исследование формы кривой, а также то обстоятельство, что кривая пересекает ось х при f(x) = 0 (т.е. при х = 0 или



В общем, если исключить необычные случаи (кривые, содержащие прямолинейные отрезки или бесконечное число изгибов), существуют четыре варианта взаимного расположения кривой и касательной в окрестности точки касания Р. (См. рис. 8, на котором касательная имеет положительный угловой коэффициент.) 1) По обе стороны от точки Р кривая лежит выше касательной (рис. 8,а). В этом случае говорят, что кривая в точке Р выпукла вниз или вогнута.



2) По обе стороны от точки Р кривая расположена ниже касательной (рис. 8,б). В этом случае говорят, что кривая выпукла вверх или просто выпукла. 3) и 4) Кривая располагается выше касательной по одну сторону от точки Р и ниже - по другую. В этом случае Р - точка перегиба. Сравнивая значения f"(x) по обе стороны от Р с ее значением в точке Р, можно определить, с каким из этих четырех случаев приходится иметь дело в конкретной задаче.
Приложения. Все изложенное выше находит важные приложения в различных областях. Например, если тело брошено вертикально вверх с начальной скоростью 200 футов в секунду, то высота s, на которой они будут находиться через t секунд по сравнению с начальной точкой составит


Действуя так же, как в рассмотренных нами примерах, находим


эта величина обращается в нуль при


, затем становится стационарной, а после убывает. Таково общее описание движения брошенного вверх тела. Из него мы узнаем, когда тело достигает высшей точки. Далее, подставляя t = 25/4 в f (t), мы получаем 625 футов, максимальную высоту подъема. В данной задаче f"(t) имеет физический смысл. Эта производная показывает скорость, с которой тело движется в момент времени t. Рассмотрим теперь приложение другого типа (рис. 9). Из листа картона площадью 75 см2 требуется изготовить коробку с квадратным дном. Каковы должны быть размеры этой коробки, чтобы она имела максимальный объем? Если х - сторона основания коробки и h - ее высота, то объем коробки равен V = x2h, а площадь поверхности равна 75 = x2 + 4xh. Преобразуя уравнение, получаем:>">



, затем становится стационарной, а после убывает. Таково общее описание движения брошенного вверх тела. Из него мы узнаем, когда тело достигает высшей точки. Далее, подставляя t = 25/4 в f (t), мы получаем 625 футов, максимальную высоту подъема. В данной задаче f"(t) имеет физический смысл. Эта производная показывает скорость, с которой тело движется в момент времени t. Рассмотрим теперь приложение другого типа (рис. 9). Из листа картона площадью 75 см2 требуется изготовить коробку с квадратным дном. Каковы должны быть размеры этой коробки, чтобы она имела максимальный объем? Если х - сторона основания коробки и h - ее высота, то объем коробки равен V = x2h, а площадь поверхности равна 75 = x2 + 4xh. Преобразуя уравнение, получаем:">

с. Производная f"(x) положительна до значения
с и отрицательна по истечении этого времени. Следовательно, s возрастает до
, затем становится стационарной, а после убывает. Таково общее описание движения брошенного вверх тела. Из него мы узнаем, когда тело достигает высшей точки. Далее, подставляя t = 25/4 в f (t), мы получаем 625 футов, максимальную высоту подъема. В данной задаче f"(t) имеет физический смысл. Эта производная показывает скорость, с которой тело движется в момент времени t. Рассмотрим теперь приложение другого типа (рис. 9). Из листа картона площадью 75 см2 требуется изготовить коробку с квадратным дном. Каковы должны быть размеры этой коробки, чтобы она имела максимальный объем? Если х - сторона основания коробки и h - ее высота, то объем коробки равен V = x2h, а площадь поверхности равна 75 = x2 + 4xh. Преобразуя уравнение, получаем:




откуда


Производная от V оказывается равной


и обращается в нуль при х = 5. Тогда

И V = 125/2. График функции V = (75x - x3)/4 показан на рис. 10 (отрицательные значения х опущены как не имеющие физического смысла в данной задаче).



Производные. Важная задача дифференциального исчисления - создание методов, позволяющих быстро и удобно находить производные. Например, несложно посчитать, что

(Производная от постоянной, разумеется, равна нулю.) Нетрудно вывести общее правило:


где n - любое целое число или дробь. Например,

(На этом примере видно, как полезны дробные показатели степени.) Приведем некоторые важнейшие формулы:


Существуют также следующие правила: 1) если каждая из двух функций g(x) и f(x) имеет производные, то производная их суммы равна сумме производных этих функций, а производная разности равна разности производных, т.е.

2) производная произведения двух функций вычисляется по формуле:

3) производная отношения двух функций имеет вид


4) производная функции, умноженной на константу, равна константе, умноженной на производную этой функции, т.е.


Часто бывает, что значения функции приходится вычислять поэтапно. Например, чтобы вычислить sin x2, нам необходимо сначала найти u = x2, а затем уже вычислить синус числа u. Производную таких сложных функций мы находим с помощью так называемого "цепного правила":


В нашем примере f(u) = sin u, f "(u) = cos u, следовательно,


откуда

Эти и другие, аналогичные им, правила позволяют сразу же выписывать производные многих функций.
Линейные аппроксимации. То обстоятельство, что, зная производную, мы можем во многих случаях заменить график функции вблизи некоторой точки ее касательной в этой точке, имеет огромное значение, поскольку с прямыми легче работать. Эта идея находит непосредственное приложение в вычислении приближенных значений функций. Например, довольно трудно вычислить значение

Max-width="" :="" height:="" auto="" width:="">
касательной, не совершая при этом сколько-нибудь серьезной ошибки. Угловой коэффициент такой касательной равен значению производной (x1/3)" = (1/3)x -2/3 при x = 1, т.е. 1/3. Так как точка (1,1) лежит на кривой и угловой коэффициент касательной к кривой в этой точке равен 1/3, уравнение касательной имеет вид>">



касательной, не совершая при этом сколько-нибудь серьезной ошибки. Угловой коэффициент такой касательной равен значению производной (x1/3)" = (1/3)x -2/3 при x = 1, т.е. 1/3. Так как точка (1,1) лежит на кривой и угловой коэффициент касательной к кривой в этой точке равен 1/3, уравнение касательной имеет вид">

при x = 1,033. Но можно воспользоваться тем, что число 1,033 близко к 1 и что
. Вблизи x = 1 мы можем заменить график кривой
касательной, не совершая при этом сколько-нибудь серьезной ошибки. Угловой коэффициент такой касательной равен значению производной (x1/3)" = (1/3)x -2/3 при x = 1, т.е. 1/3. Так как точка (1,1) лежит на кривой и угловой коэффициент касательной к кривой в этой точке равен 1/3, уравнение касательной имеет вид


или


На этой прямой при х = 1,033

Полученное значение y должно быть очень близко к истинному значению y; и, действительно, оно лишь на 0,00012 больше истинного. В математическом анализе разработаны методы, позволяющие повышать точность такого рода линейных приближений. Эти методы обеспечивают надежность наших приближенных вычислений. Только что описанная процедура наводит на мысль об одном полезном обозначении. Пусть P - точка, соответствующая на графике функции f переменной х, и пусть функция f(x) дифференцируема. Заменим график кривой вблизи точки Р касательной к нему, проведенной в этой точке. Если х изменить на величину h, то ордината касательной изменится на величину h*f"(x). Если h очень мало, то последняя величина служит хорошим приближением к истинному изменению ординаты y графика. Если вместо h мы напишем символ dx (это не произведение!), а изменение ординаты y обозначим dy, то получим dy = f"(x)dx, или dy/dx = f"(x) (см. рис. 11). Поэтому вместо Dy или f"(x) для обозначения производной часто используется символ dy/dx. Удобство этого обозначения зависит главным образом от явного появления цепного правила (дифференцирования сложной функции); в новых обозначениях эта формула выглядит следующим образом:




где подразумевается, что у зависит от u, а u в свою очередь зависит от х. Величина dy называется дифференциалом у; в действительности она зависит от двух переменных, а именно: от х и приращения dx. Когда приращение dx очень мало, величина dy близка к соответствующему изменению величины y. Но предполагать, что приращение dx мало, нет необходимости. Производную функции y = f(x) мы обозначили f"(x) или dy/dx. Часто оказывается возможным взять производную от производной. Результат называется второй производной от f (x) и обозначается f"(x) или d 2y/dx2. Например, если f(x) = x3 - 3x2, то f"(x) = 3x2 - 6x и f"(x) = 6x - 6. Аналогичные обозначения используются и для производных более высокого порядка. Однако, чтобы избежать большого количества штрихов (равного порядку производной) четвертую производную (например) можно записать как f (4)(x), а производную n-го порядка как f (n)(x). Можно показать, что кривая в точке выпукла вниз, если вторая производная положительна, и выпукла вверх, если вторая производная отрицательна. Если функция имеет вторую производную, то изменение величины y, соответствующее приращению dx переменной х, можно приближенно вычислить по формуле


Это приближение, как правило, лучше, чем то, которое дает дифференциал f"(x)dx. Оно соответствует замене части кривой уже не прямой, а параболой. Если у функции f(x) существуют производные более высоких порядков, то


Остаточный член имеет вид


где x - некоторое число между x и x + dx. Приведенный выше результат называется формулой Тейлора с остаточным членом. Если f(x) имеет производные всех порядков, то обычно Rn (r) 0 при n (r) Ґ.
ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ
Площади. При изучении площадей криволинейных плоских фигур открываются новые аспекты математического анализа. Такого рода задачи пытались решать еще древние греки, для которых определение, например, площади круга было одной из труднейших задач. Больших успехов в решении этой проблемы добился Архимед, которому также удалось найти площадь параболического сегмента (рис. 12). С помощью весьма сложных рассуждений Архимед доказал, что площадь параболического сегмента составляет 2/3 от площади описанного прямоугольника и, следовательно, в данном случае равна (2/3)(16) = 32/3. Как мы увидим в дальнейшем, этот результат можно легко получить методами математического анализа.



Предшественники Ньютона и Лейбница, главным образом Кеплер и Кавальери, решали задачи о вычислении площадей криволинейных фигур с помощью метода, который трудно назвать логически обоснованным, но который оказался чрезвычайно плодотворным. Когда же Валлис в 1655 соединил методы Кеплера и Кавальери с методами Декарта (аналитической геометрией) и воспользовался только что зародившейся алгеброй, сцена для появления Ньютона была полностью подготовлена. Валлис разбивал фигуру, площадь которой требовалось вычислить, на очень узкие полоски, каждую из которых приближенно считал прямоугольником. Затем он складывал площади аппроксимирующих прямоугольников и в простейших случаях получал величину, к которой стремилась сумма площадей прямоугольников, когда число полосок стремилось к бесконечности. На рис. 13 показаны прямоугольники, соответствующие некоторому разбиению на полоски площади под кривой y = x2.



Основная теорема. Великое открытие Ньютона и Лейбница позволило исключить трудоемкий процесс перехода к пределу суммы площадей. Это было сделано благодаря новому взгляду на понятие площади. Суть в том, что мы должны представить площадь под кривой как порожденную ординатой, движущейся слева направо и спросить, с какой скоростью изменяется заметаемая ординатами площадь. Ключ к ответу на этот вопрос мы получим, если рассмотрим два частных случая, в которых площадь заранее известна. Начнем с площади под графиком линейной функции y = 1 + x, поскольку в этом случае площадь можно вычислить с помощью элементарной геометрии. Пусть A(x) - часть плоскости, заключенная между прямой y = 1 + x и отрезком OQ (рис. 14). При движении QP вправо площадь A(x) возрастает. С какой скоростью? Ответить на этот вопрос нетрудно, так как мы знаем, что площадь трапеции равна произведению ее высоты на полусумму оснований. Следовательно,




Скорость изменения площади A(x) определяется ее производной


Мы видим, что A"(x) совпадает с ординатой у точки Р. Случайно ли это? Попробуем проверить на параболе, изображенной на рис. 15. Площадь A (x) под параболой у = х2 в интервале от 0 до х равна A(x) = (1/3)(x)(x2) = x3/3. Скорость изменения этой площади определяется выражением



Которое в точности совпадает с ординатой у движущейся точки Р. Если предположить, что это правило выполняется в общем случае так, что


есть скорость изменения площади под графиком функции y = f(x), то этим можно воспользоваться для вычислений и других площадей. На самом деле, соотношение A"(x) = f(x) выражает фундаментальную теорему, которую можно было бы сформулировать следующим образом: производная, или скорость изменения площади как функции от х, равна значению функции f (x) в точке х. Например, чтобы найти площадь под графиком функции y = x3 от 0 до х (рис. 16), положим



Возможный ответ гласит:


так как производная от х4/4 действительно равна х3. Кроме того, A(x) равна нулю при х = 0, как и должно быть, если A(x) действительно является площадью. В математическом анализе доказывается, что другого ответа, кроме приведенного выше выражения для A(x), не существует. Покажем, что это утверждение правдоподобно с помощью следующего эвристического (нестрогого) рассуждения. Предположим, что существует какое-либо второе решение В(x). Если A(x) и В(x) "стартуют" одновременно с нулевого значения при х = 0 и все время изменяются с одинаковой скоростью, то их значения ни при каком х не могут стать различными. Они должны всюду совпадать; следовательно, существует единственное решение. Как можно обосновать соотношение A"(x) = f(x) в общем случае? На этот вопрос можно ответить, лишь изучая скорость изменения площади как функции от х в общем случае. Пусть m - наименьшее значение функции f (x) в интервале от х до (x + h), а M - наибольшее значение этой функции в том же интервале. Тогда приращение площади при переходе от х к (x + h) должно быть заключено между площадями двух прямоугольников (рис. 17). Основания обоих прямоугольников равны h. Меньший прямоугольник имеет высоту m и площадь mh, больший, соответственно, М и Mh. На графике зависимости площади от х (рис. 18) видно, что при изменении абсциссы на h, значение ординаты (т.е. площадь) увеличивается на величину, заключенную между mh и Mh. Угловой коэффициент секущей на этом графике находится между m и M. Что происходит, когда h стремится к нулю? Если график функции y = f(x) непрерывен (т.е. не содержит разрывов), то и М, и m стремятся к f(x). Следовательно, угловой коэффициент A"(x) графика площади как функции от х равен f(x). Именно к такому заключению и требовалось придти.





Лейбниц предложил для площади под кривой y = f(x) от 0 до а обозначение

При строгом подходе этот так называемый определенный интеграл должен быть определен как предел некоторых сумм на манер Валлиса. Учитывая полученный выше результат, ясно, что этот интеграл вычисляется при условии, что мы можем найти такую функцию A(x), которая обращается в нуль при х = 0 и имеет производную A"(x), равную f (x). Нахождение такой функции принято называть интегрированием, хотя уместнее эту операцию было бы называть антидифференцированием, имея в виду, что она является в некотором смысле обратной дифференцированию. В случае многочлена интегрирование выполняется просто. Например, если

То


в чем нетрудно убедиться, продифференцировав A(x). Чтобы вычислить площадь А1 под кривой y = 1 + x + x2/2, заключенную между ординатами 0 и 1, мы просто записываем

И, подставляя х = 1, получаем A1 = 1 + 1/2 + 1/6 = 5/3. Площадь A(x) от 0 до 2 равна A2 = 2 + 4/2 + 8/6 = 16/3. Как видно из рис. 19, площадь, заключенная между ординатами 1 и 2, равна A2 - A1 = 11/3. Обычно она записывается в виде определенного интеграла




Объемы. Аналогичные рассуждения позволяют удивительно просто вычислять объемы тел вращения. Продемонстрируем это на примере вычисления объема шара, еще одной классической задачи, которую древним грекам, с помощью известных им методов, удалось решить с великим трудом. Повернем часть плоскости, заключенной внутри четверти круга радиуса r, на угол 360° вокруг оси х. В результате мы получим полушарие (рис. 20), объем которого обозначим V(x). Требуется определить, с какой скоростью возрастает V(x) с увеличением x. Переходя от х к х + h, нетрудно убедиться в том, что приращение объема меньше, чем объем p(r2 - x2)h кругового цилиндра радиуса

Max-width="" :="" height:="" auto="" width:="">
и высотой h. Следовательно, на графике функции V(x) угловой коэффициент секущей заключен между p(r2 - x2) и p[]. Когда h стремится к нулю, угловой коэффициент стремится к">


и высотой h, и больше, чем объем p[]h цилиндра радиуса


и высотой h. Следовательно, на графике функции V(x) угловой коэффициент секущей заключен между p(r2 - x2) и p[]. Когда h стремится к нулю, угловой коэффициент стремится к




Следовательно,


При x = r мы получаем

Для объема полушария, и, следовательно, 4pr3/3 для объема всего шара. Аналогичный метод позволяет находить длины кривых и площади искривленных поверхностей. Например, если a(x) - длина дуги PR на рис. 21, то наша задача состоит в вычислении a"(x). Воспользуемся на эвристическом уровне приемом, который позволяет не прибегать к обычному предельному переходу, необходимому при строгом доказательстве результата. Предположим, что скорость изменения функции а(x) в точке Р такая же, какой она была бы при замене кривой ее касательной PT в точке P. Но из рис. 21 непосредственно видно, при шаге h вправо или влево от точки х вдоль РТ значение а(x) меняется на




Следовательно, скорость изменения функции a(x) составляет


Чтобы найти саму функцию a(x), необходимо лишь проинтегрировать выражение, стоящее в правой части равенства. Оказывается, что для большинства функций выполнить интегрирование довольно трудно. Поэтому разработка методов интегрального исчисления составляет большую часть математического анализа.
Первообразные. Каждую функцию, производная которой равна данной функции f(x), называют первообразной (или примитивной) для f(x). Например, х3/3 - первообразная для функции х2, так как (x3/3)" = x2. Разумеется, х3/3 - не единственная первообразная функции х2, так как x3/3 + C также является производной для х2 при любой константе С. Однако мы в дальнейшем условимся опускать такие аддитивные постоянные. В общем случае


где n - положительное целое число, так как (xn + 1/(n + 1))" = xn. Соотношение (1) выполняется в еще более общем смысле, если n заменить любым рациональным числом k, кроме -1. Произвольную первообразную функцию для заданной функции f(x) принято называть неопределенным интегралом от f(x) и обозначать его в виде

Например, так как (sin x)" = cos x, справедлива формула



Из формулы (1) следует, что

для n не равной -1. Так как (lnx)" = x-1, то


.
Во многих случаях, когда существует формула для неопределенного интеграла от заданной функции, ее можно найти в многочисленных широко публикуемых таблицах неопределенных интегралов. Табличными являются интегралы от элементарных функций (в их число входят степени, логарифмы, показательная функция, тригонометрические функции, обратные тригонометрические функции, а также их конечные комбинации, получаемые с помощью операций сложения, вычитания, умножения и деления). С помощью табличных интегралов можно вычислить интегралы и от более сложных функций. Существует много способов вычисления неопределенных интегралов; наиболее распространенный из них метод подстановки или замены переменной. Он состоит в том, что если мы хотим в неопределенном интеграле (2) заменить x на некоторую дифференцируемую функцию x = g(u), то, чтобы интеграл не изменился, надо x заменить на g"(u)du. Иначе говоря, справедливо равенство

Пример 1.

(подстановка 2x = u, откуда 2dx = du). Приведем еще один метод интегрирования - метод интегрирования по частям. Он основан на известной уже формуле

Ее можно записать так:


Проинтегрировав левую и правую части, и учитывая, что


получим

Эта формула называется формулой интегрирования по частям.
Пример 2. Требуется найти

. Так как cos x = (sin x)", мы можем записать, что



Из (5), полагая u = x и v = sin x, получаем

А поскольку (-cos x)" = sin x мы находим, что


и


Пример 3.

Следует подчеркнуть, что мы ограничились лишь весьма кратким введением в весьма обширный предмет, в котором накоплены многочисленные остроумные приемы.
Функции двух переменных. В связи с кривой y = f(x) мы рассмотрели две задачи. 1) Найти угловой коэффициент касательной к кривой в данной точке. Эта задача решается вычислением значения производной f"(x) в указанной точке. 2) Найти площадь под кривой над отрезком оси х, ограниченную вертикальными линиями х = а и х = b. Эта задача решается вычислением определенного интеграла



Следующие примеры показывают, как решаются эти задачи.
Пример 4. Найти касательную плоскость к поверхности

В точке (0,0,2). Плоскость определена, если заданы две лежащие в ней пересекающиеся прямые. Одну из таких прямых (l1) мы получим в плоскости xz (у = 0), вторую (l2) - в плоскости yz (x = 0) (см. рис. 23).



Прежде всего, если у = 0, то z = f(x,0) = 2 - 2x - 3x2. Производная по х, обозначаемая f"x(x,0) = -2 - 6x, при х = 0 имеет значение -2. Прямая l1, задаваемая уравнениями z = 2 - 2x, у = 0 - касательная к С1, линии пересечения поверхности с плоскостью у = 0. Аналогично, если х = 0, то f(0,y) = 2 - y - y2, и производная по у имеет вид


Так как f"y(0,0) = -1, кривая С2 - линия пересечения поверхности с плоскостью yz - имеет касательную l2, задаваемую уравнениями z = 2 - y, х = 0. Искомая касательная плоскость содержит обе прямые l1 и l2 и записывается уравнением

Это - уравнение плоскости. Кроме того, мы получаем прямые l1 и l2, полагая, соответственно, у = 0 и х = 0. В том, что уравнение (7) действительно задает касательную плоскость, на эвристическом уровне можно убедиться, если заметить, что это уравнение содержит члены первого порядка, входящие в уравнение (6), и что члены второго порядка можно представить в виде -[]. Так как это выражение отрицательно при всех значениях х и у, кроме х = у = 0, поверхность (6) всюду лежит ниже плоскости (7), кроме точки Р = (0,0,0). Можно сказать, что поверхность (6) выпукла вверх в точке Р.
Пример 5. Найти касательную плоскость к поверхности z = f(x,y) = x2 - y2 в начале координат 0. На плоскости у = 0 имеем: z = f(x,0) = x2 и f"x(x,0) = 2x. На С1, линии пересечения, z = x2. В точке O угловой коэффициент равен f"x(0,0) = 0. На плоскости х = 0 имеем: z = f(0,y) = -y2 и f"y(0,y) = -2y. На С2, линии пересечения, z = -y2. В точке O угловой коэффициент кривой С2 равен f"y(0,0) = 0. Так как касательные к С1 и С2 являются осями х и у, касательная плоскость, содержащая их, есть плоскость z = 0. Однако в окрестности начала координат наша поверхность не находится по одну сторону от касательной плоскости. Действительно, кривая С1 всюду, за исключением точки 0, лежит выше касательной плоскости, а кривая С2 - соответственно ниже ее. Поверхность пересекает касательную плоскость z = 0 по прямым у = х и у = -х. Про такую поверхность говорят, что она имеет седловую точку в начале координат (рис. 24) .



Частные производные. В предыдущих примерах мы использовали производные от f (x,y) по х и по у. Рассмотрим теперь такие производные в более общем плане. Если у нас имеется функция двух переменных, например, F(x,y) = x2 - xy, то мы можем определить в каждой точке две ее "частные производные", одну - дифференцируя функцию по х и фиксируя у, другую - дифференцируя по у и фиксируя х. Первая из этих производных обозначается как f"x(x,y) или df/dx; вторая - как f"y(x,y) или df/dy. Если f(x,y) = x2 - xy, то df/dx = 2x - y и df/dy = -x. Заметим, что частные производные от любой функции - это, вообще говоря, новые функции. На практике эти функции в свою очередь дифференцируемы. Частные производные от f"x по х и у принято обозначать, соответственно, и или d2f/dx2 и d2f/dxdy; аналогичные обозначения используются и для частных производных от f"y. Если обе смешанные производные (по х и у, по у и х) непрерывны, то d2f/dxdy = d2f/dydx; в нашем примере d2f/dxdy = d2f/dydx = -1. Частная производная f"x(x,y) указывает скорость изменения функции f в точке (x,y) в направлении возрастания х, а f"y(x,y) - скорость изменения функции f в направлении возрастания у. Скорость изменения функции f в точке (х,у) в направлении прямой, составляющей угол q с положительным направлением оси х, называется производной от функции f по направлению; ее величина представляет собой комбинацию двух частных производных от функции f - по х и по у, и равна


Как мы уже видели в частных случаях, касательная плоскость к поверхности z = f(x,y) в точке (x0, y0) имеет уравнение

Если обозначить x - x0 через dx, а y - y0 через dy, то уравнение касательной плоскости означает, что изменение dz = z - z0 в касательной плоскости, когда x изменяется на dx, а у - на dy, равно dz = f"x(x0,y0)dx + f"y(x0,y0)dy. Эта величина называется дифференциалом функции f. Если f имеет непрерывные частные производные, то изменение dz в касательной плоскости почти равно (при малых dx и dy) истинному изменению z на поверхности, но вычислить дифференциал обычно бывает легче. Уже рассмотренная нами формула из метода замены переменной, известная как производная сложной функции или цепное правило, в одномерном случае, когда у зависит от х, а х зависит от t, имеет вид:


Для функций двух переменных аналогичная формула имеет вид:


Понятия и обозначения частного дифференцирования нетрудно обобщить на более высокие размерности. В частности, в случае если поверхность задана неявно уравнением f(x,y,z) = 0, уравнению касательной плоскости к поверхности можно придать более симметричную форму: уравнение касательной плоскости в точке (x0,y0,z0) имеет вид


Если задана поверхность f(x,y,z) = 0 и мы хотим узнать, что происходит на поверхности, то обычно любые две из трех переменных можно считать независимыми, а третью переменную рассматривать как зависимую от них. Иногда для обозначения частных производных в этом случае используется символ (dz/dx)y, чтобы подчеркнуть, что дифференцирование производится по х, а у считается независимой переменной. Имеем:


эта формула подчеркивает, что мы не можем придать независимый смысл символам dx, dy, dz или рассматривать dz/dx как отношение dz к dx. Обратимся теперь к примеру второй задачи, т.е. вычислению объемов.
Пример 6. Найти объем тела, заключенного между поверхностью


и над единичным квадратом, см. на рис. 25.



Пусть V(x) - объем, ограниченный поверхностью и пятью плоскостями, а именно z = 0, y = 0, y = 1, x = 0 и плоскостью PQRS, перпендикулярной оси х и пересекающей эту ось на расстоянии х от начала координат. Нетрудно видеть, что производная V"(x) равна А(x), площади поперечного сечения PQRS. Таким образом,

Но А(x) - площадь под кривой


Следовательно,

Где интегрирование проводится по у, а х рассматривается как постоянная. Подставляя (9) в (8), запишем V в виде повторного интеграла

В формуле (10) предполагается, что сначала проводится внутреннее интегрирование. Результат этого интегрирования, выражение [[(5/6) - (x2/4)]], затем интегрируется по х от 0 до 1. Окончательный результат равен 3/4. Формулу (10) можно интерпретировать и как так называемый двойной интеграл, т.е. как предел суммы объемов элементарных "клеток". Каждая такая клетка имеет основание DxDy и высоту, равную высоте поверхности над некоторой точкой прямоугольного основания (см. рис. 26). Можно показать, что обе точки зрения на формулу (10) эквивалентны. Двойные интегралы используются для нахождения центров тяжести и многочисленных моментов, встречающихся в механике.



Более строгое обоснование математического аппарата. До сих пор мы излагали понятия и методы математического анализа на интуитивном уровне и, не колеблясь, прибегали к геометрическим фигурам. Нам осталось кратко рассмотреть более строгие методы, появившиеся в 19 и 20-м столетиях. В начале 19 в., когда эпоха штурма и натиска в "создании математического анализа" завершилась, на первый план вышли вопросы его обоснования. В работах Абеля, Коши и ряда других выдающихся математиков были точно определены понятия "предела", "непрерывной функции", "сходящегося ряда". Это было необходимо для того, чтобы внести логический порядок в основание математического анализа с тем, чтобы сделать его надежным инструментом исследования. Потребность в тщательном обосновании стала еще более очевидной после открытия в 1872 Вейерштрассом всюду непрерывных, но нигде не дифференцируемых функций (график таких функций в каждой своей точке имеет излом). Этот результат произвел ошеломляющее впечатление на математиков, поскольку явно противоречил их геометрической интуиции. Еще более поразительным примером ненадежности геометрической интуиции стала построенная Д.Пеано непрерывная кривая, целиком заполняющая некоторый квадрат, т.е. проходящая через все его точки. Эти и другие открытия вызвали к жизни программу "арифметизации" математики, т.е. придания ей большей надежности путем обоснования всех математических понятий с помощью понятия числа. Почти пуританское воздержание от наглядности в работах по основаниям математики имело свое историческое оправдание. По современным канонам логической строгости недопустимо говорить о площади под кривой y = f(x) и над отрезком оси х, даже если f - непрерывная функция, не определив предварительно точный смысл термина "площадь" и не установив, что определенная таким образом площадь действительно существует. Эта задача была успешно решена в 1854 Б.Риманом, который дал точное определение понятия определенного интеграла. С тех пор идея суммирования, стоящая за понятием определенного интеграла, была предметом многих глубоких исследований и обобщений. В результате сегодня удается придать смысл определенному интегралу, даже если подынтегральная функция является повсюду разрывной. Новые понятия интегрирования, в создание которых большой вклад внес А. Лебег (1875-1941) и другие математики, приумножили мощь и красоту современного математического анализа. Вряд ли было бы уместно входить в детали всех этих и других понятий. Ограничимся лишь тем, что приведем строгие определения предела и определенного интеграла. 1) Число L называется пределом функции f (x) при х, стремящимся к а, если при любом сколь угодно малом числе e найдется соответствующее положительное число d, такое, что

В истории математики условно можно выделить два основных периода: элементарной и современной математики. Рубежом, от которого принято вести отсчет эпохи новой (иногда говорят - высшей) математики, стал XVII век – век появления математического анализа. К концу XVII в. И. Ньютоном, Г. Лейбницем и их предшественниками был создан аппарат нового дифференциального исчисления и интегрального исчисления, составляющий основу математического анализа и даже, пожалуй, математическую основу всего современного естествознания.

Математический анализ – это обширная область математики с характерным объектом изучения (переменной величиной), своеобразным методом исследования (анализом посредством бесконечно малых или посредством предельных переходов), определенной системой основных понятий (функция, предел, производная, дифференциал, интеграл, ряд) и постоянно совершенствующимся и развивающимся аппаратом, основу которого составляют дифференциальное и интегральное исчисления.

Попробуем дать представление о том, какая математическая революция произошла в XVII в., чем характеризуется связанный с рождением математического анализа переход от элементарной математики к той, что ныне составляет предмет исследований математического анализа и чем объясняется его фундаментальная роль во всей современной системе теоретических и прикладных знаний.

Представьте себе, что перед вами прекрасно выполненная цветная фотография набегающей на берег штормовой океанской волны: могучая сутуловатая спина, крутая, но чуть впалая грудь, уже наклоненная вперед и готовая упасть голова с терзаемой ветром седой гривой. Вы остановили мгновение, вам удалось поймать волну, и вы можете теперь без спешки внимательно изучать ее во всех подробностях. Волну можно измерить, и, пользуясь средствами элементарной математики, вы сделаете много важных выводов об этой волне, а значит, и всех ее океанских сестрах. Но, остановив волну, вы лишили ее движения и жизни. Ее зарождение, развитие, бег, сила, с которой она обрушивается на берег, - все это оказалось вне вашего поля зрения, потому что вы не располагаете пока ни языком, ни математическим аппаратом, пригодными для описания и изучения не статических, а развивающихся, динамических процессов, переменных величин и их взаимосвязей.

«Математический анализ не менее всеобъемлющ, чем сама природа: он определяет все ощутимые взаимосвязи, измеряет времена, пространства, силы, температуры». Ж. Фурье

Движение, переменные величины и их взаимосвязи окружают нас повсюду. Различные виды движения и их закономерности составляют основной объект изучения конкретных наук: физики, геологии, биологии, социологии и др. Поэтому точный язык и соответствующие математические методы описания и изучения переменных величин оказались необходимыми во всех областях знания примерно в той же степени, в какой числа и арифметика необходимы при описании количественных соотношений. Так вот, математический анализ и составляет основу языка и математических методов описания переменных величин и их взаимосвязей. В наши дни без математического анализа невозможно не только рассчитать космические траектории, работу ядерных реакторов, бег океанской волны и закономерности развития циклона, но и экономично управлять производством, распределением ресурсов, организацией технологических процессов, прогнозировать течение химических реакций или изменение численности различных взаимосвязанных в природе видов животных и растений, потому что все это - динамические процессы.

Элементарная математика была в основном математикой постоянных величин, она изучала главным образом соотношения между элементами геометрических фигур, арифметические свойства чисел и алгебраические уравнения. Ее отношение к действительности в какой-то мере можно сравнить с внимательным, даже тщательным и полным изучением каждого фиксированного кадра киноленты, запечатлевшей изменчивый, развивающийся живой мир в его движении, которого, однако, не видно на отдельном кадре и которое можно наблюдать, только посмотрев ленту в целом. Но как кино немыслимо без фотографии, так и современная математика невозможна без той ее части, которую мы условно называем элементарной, без идей и достижений многих выдающихся ученых, разделенных порой десятками столетий.

Математика едина, и «высшая» ее часть связана с «элементарной» примерно так же, как следующий этаж строящегося дома связан с предшествующим, и ширина горизонтов, которые математика открывает нам в окружающий мир, зависит от того, на какой этаж этого здания нам удалось подняться. Родившийся в XVII в. математический анализ открыл нам возможности для научного описания, количественного и качественного изучения переменных величин и движения в широком смысле этого слова.

Каковы же предпосылки появления математического анализа?

К концу XVII в. сложилась следующая ситуация. Во-первых, в рамках самой математики за долгие годы накопились некоторые важные классы однотипных задач (например, задачи измерения площадей и объемов нестандартных фигур, задачи проведения касательных к кривым) и появились методы их решения в различных частных случаях. Во-вторых, оказалось, что эти задачи теснейшим образом связаны с задачами описания произвольного (не обязательно равномерного) механического движения, и в частности с вычислением его мгновенных характеристик (скорости, ускорения в любой момент времени), а также с нахождением величины пройденного пути для движения, происходящего с заданной переменной скоростью. Решение этих проблем было необходимо для развития физики, астрономии, техники.

Наконец, в-третьих, к середине XVII в. трудами Р. Декарта и П. Ферма были заложены основы аналитического метода координат (так называемой аналитической геометрии), позволившие сформулировать разнородные по своему происхождению геометрические и физические задачи на общем (аналитическом) языке чисел и числовых зависимостей, или, как мы теперь говорим, числовых функций.

НИКОЛАЙ НИКОЛАЕВИЧ ЛУЗИН
(1883-1950)

Н. Н. Лузин – советский математик, основоположник советской школы теории функций, академик (1929).

Лузин родился в Томске, учился в томской гимназии. Формализм гимназического курса математики оттолкнул от себя талантливого юношу, и лишь способный репетитор смог раскрыть перед ним красоту и величие математической науки.

В 1901 г. Лузин поступил на математическое отделение физико-математического факультета Московского университета. С первых лет обучения в круг его интересов попали вопросы, связанные с бесконечностью. В конце XIX в. немецкий ученый Г. Кантор создал общую теорию бесконечных множеств, получившую многочисленные применения в исследовании разрывных функций. Лузин начал изучать эту теорию, но его занятия были прерваны в 1905 г. Студенту, принимавшему участие в революционной деятельности, пришлось на время уехать во Францию. Там он слушал лекции виднейших французских математиков того времени. По возвращении в Россию Лузин окончил университет и был оставлен для подготовки к профессорскому званию. Вскоре он вновь уехал в Париж, а затем в Геттинген, где сблизился со многими учеными и написал первые научные работы. Основной проблемой, интересовавшей ученого, был вопрос о том, могут ли существовать множества, содержащие больше элементов, чем множество натуральных чисел, но меньше, чем множество точек отрезка (проблема континуума).

Для любого бесконечного множества, которое можно было получить из отрезков с помощью операций объединения и пересечения счетных совокупностей множеств, эта гипотеза выполнялась, и, чтобы решить проблему, нужно было выяснить, какие еще есть способы конструирования множеств. Одновременно Лузин изучал вопрос, можно ли представить любую периодическую функцию, даже имеющую бесконечно много точек разрыва, в виде суммы тригонометрического ряда, т.е. суммы бесконечного множества гармонических колебаний. По этим вопросам Лузин получил ряд значительных результатов и в 1915 г. защитил диссертацию «Интеграл и тригонометрический ряд», за которую ему сразу присудили ученую степень доктора чистой математики, минуя существовавшую в то время промежуточную степень магистра.

В 1917 г. Лузин стал профессором Московского университета. Талантливый преподаватель, он привлекал к себе наиболее способных студентов и молодых математиков. Своего расцвета школа Лузина достигла в первые послереволюционные годы. Ученики Лузина образовали творческий коллектив, который шутливо называли «лузитанией». Многие из них получили первоклассные научные результаты еще на студенческой скамье. Например, П. С. Александров и М. Я. Суслин (1894-1919) открыли новый метод конструирования множеств, что послужило началом развития нового направления - дескриптивной теории множеств. Исследования в этой области, проводившиеся Лузиным и его учениками, показали, что обычных методов теории множеств недостаточно для решения многих возникавших в ней проблем. Научные предвидения Лузина полностью подтвердились в 60-е гг. XX в. Многие ученики Н. Н. Лузина стали впоследствии академиками и членами-корреспондентами АН СССР. Среди них П. С. Александров. А. Н. Колмогоров. М. А. Лаврентьев, Л. А. Люстерник, Д. Е. Меньшов, П. С. Новиков. Л. Г. Шнирельман и другие.

Современные советские и зарубежные математики в своих работах развивают идеи Н. Н. Лузина.

Стечение этих обстоятельств и привело к тому, что в конце XVII в. двум ученым – И. Ньютону и Г. Лейбницу – независимо друг от друга удалось создать для решения названных задач математический аппарат, подытоживший и обобщивший отдельные результаты предшественников, среди которых и ученый древности Архимед и современники Ньютона и Лейбница – Б. Кавальери, Б. Паскаль, Д. Грегори, И. Барроу. Этот аппарат и составил основу математического анализа – нового раздела математики, изучающего различные развивающиеся процессы, т.е. взаимосвязи переменных величин, которые в математике называют функциональными зависимостями или, иначе, функциями. Кстати, сам термин «функция» потребовался и естественно возник именно в XVII в., а к настоящему времени он приобрел не только общематематическое, но и общенаучное значение.

Начальные сведения об основных понятиях и математическом аппарате анализа даны в статьях «Дифференциальное исчисление» и «Интегральное исчисление».

В заключение хотелось бы остановиться только на одном общем для всей математики и характерном для анализа принципе математического абстрагирования и в этой связи объяснить, в каком виде математический анализ изучает переменные величины и в чем секрет такой универсальности его методов для изучения всевозможных конкретных развивающихся процессов и их взаимосвязей.

Рассмотрим несколько поясняющих примеров и аналогий.

Мы порой уже не отдаем себе отчета в том, что, например, математическое соотношение , написанное не для яблок, стульев или слонов, а в отвлеченном от конкретных объектов абстрактном виде, - выдающееся научное завоевание. Это математический закон, который, как показывает опыт, применим к различным конкретным объектам. Значит, изучая в математике общие свойства отвлеченных, абстрактных чисел, мы тем самым изучаем количественные соотношения реального мира.

Например, из школьного курса математики известно, что , поэтому в конкретной ситуации вы могли бы сказать: «Если мне для перевозки 12 т грунта не выделят два шеститонных самосвала, то можно запросить три четырехтонки и работа будет выполнена, а если дадут только одну четырехтонку, то ей придется сделать три рейса». Так привычные теперь для нас отвлеченные числа и числовые закономерности связаны с их конкретными проявлениями и приложениями.

Примерно так же связаны законы изменения конкретных переменных величин и развивающихся процессов природы с той абстрактной, отвлеченной формой-функцией, в которой они появляются и изучаются в математическом анализе.

Например, абстрактное соотношение может быть отражением зависимости кассового сбора у кинотеатра от количества проданных билетов, если 20 – это 20 копеек – цена одного билета. Но если мы едем по шоссе на велосипеде, проезжая 20 км в час, то это же соотношение можно истолковать как взаимосвязь времени (часов) нашей велосипедной прогулки и покрытого за это время расстояния (километров)., вы всегда можете утверждать, что, например, изменение в несколько раз приводит к пропорциональному (т.е. во столько же раз) изменению величины , а если , то верно и обратное заключение. Значит, в частности, для увеличения кассового сбора кинотеатра в два раза вам придется привлечь вдвое больше зрителей, а для того, чтобы на велосипеде с той же скоростью проехать вдвое большее расстояние, вам придется ехать вдвое дольше.

Математика изучает и простейшую зависимость , и другие, значительно более сложные зависимости в отвлеченном от частной интерпретации, общем, абстрактном виде. Выявленные в таком исследовании свойства функции или методы изучения этих свойств будут носить характер общих математических приемов, заключений, законов и выводов, применимых к каждому конкретному явлению, в котором встречается изученная в абстрактном виде функция, независимо от того, к какой области знания это явление относится.

Итак, математический анализ как раздел математики оформился в конце XVII в. Предметом изучения в математическом анализе (как он представляется с современных позиций) являются функции, или, иначе, зависимости между переменными величинами.

С возникновением математического анализа математике стало доступно изучение и отражение развивающихся процессов реального мира; в математику вошли переменные величины и движение.

Составитель Ю.В.Обрубов

Калуга - 2012

Введение в математический анализ.

Действительные числа. Переменные и постоянные величины.

Одним из основных понятий математики является число. Положительные числа 1,2,3, … , которые получаются при счете, называются натуральными. Числа … -3,-2,-1,0,1,2,3,… называют целыми. Числа, которые могут быть представлены в виде конечного отношения двух целых чисел (
) называютсярациональными. К ним относятся целые и дробные, положительные и отрицательные числа. Числа, которые представляются бесконечными непериодическими дробями называются иррациональными. Примерами иррациональных чисел служат
,
. В множестве иррациональных чисел выделяюттрансцендентные числа. Это числа, которые являются результатом неалгебраических действий. Наиболее известными из них являются число и неперово число. Числа рациональные и иррациональные называютсядействительными . Действительные числа изображаются точками на числовой оси. Каждой точке на числовой оси соответствует одно единственное действительное число и, наоборот, каждому действительному числу соответствует единственная точка числовой оси. Таким образом, между действительными числами и точками числовой прямой установлено взаимно-однозначное соответствие. Это дает возможность равнозначно употреблять термины “число а” и “точка а”.

В процессе изучения различных физических, экономических, социальных процессов часто приходится иметь дело с величинами, представляющими численные значения параметров исследуемых явлений. При этом одни из них изменяются, а другие сохраняют свои значения.

Переменной называется величина, которая принимает различные численные значения. Величина, численное значение которой не изменяется в данной задаче или эксперименте называетсяпостоянной. Переменные величины обычно обозначают латинскими буквами
а постоянные
.

Переменная величина считается заданной, если известно множество значений, которые она может принимать. Это множество называется областью изменения переменной.

Существуют различные виды множеств значений числовой переменной величины.

Интервалом называется множество значений х, заключенных между числамиaиb, при этом числаaиbне принадлежат рассматриваемому множеству. Интервал обозначают: (a,b);a

Отрезком называется множество значений х, заключенных между числами а иb, при этом числа а иbпринадлежат рассматриваемому множеству. Отрезок обозначают ,a≤x≤b.

Множество всех действительных чисел является открытым интервалом. Обозначается: (- ∞,+ ∞), -∞ <х <+∞, R.

Окрестностью точки х 0 называется произвольный интервал (а,b), содержащий точку х 0 , все точки этого интервала удовлетворяют неравенствуa

ε - окрестностью точки а называется интервал с центром в точке а, удовлетворяющий неравенствуa–ε

Функция. Основные определения и понятия.

Функция является одним из основных понятий математического анализа. Пусть Х и У произвольные множества действительных чисел.

Если каждому числу х Х по некоторому правилу или закону постав-лено в соответствие единственное вполне определенное действительное число уУ, то говорят, что заданафункция с областью определения Х и множеством значений У. Обозначают у =f(х). Переменная величина х называетсяаргументом функции.

В определении функции существенны два момента: указание области определения и установление закона соответствия.

Областью определения или областью существования функции называется множество значений аргумента при которых функция существует, то есть имеет смысл.

Областью изменения функции называется множество значений у, которые он принимает при допустимых значениях х.

Способы задания функции.

    Аналитический способ задания функции.

При этом способе задания функции закон соответствия записывается в виде формулы (аналитического выражения), указывающей посредством каких математических преобразований по известному значению аргумента х можно найти соответствующее значение у.

Функция может быть задана одним аналитическим выражением на всей своей области определения или представлять совокупность нескольких аналитических выражений.

Например: у = sin (x 2 + 1)

2. Табличный способ задания функции

В результате непосредственного наблюдения или экспериментального изучения какого-либо явления или процесса в определенном порядке выписываются значения аргумента х и соответствующие им значения у.

Эта таблица определяет функцию у от х.

Примером табличного способа задания функции могут служить таблицы тригонометрических функций, таблицы логарифмов, даты и курсы валют, температура и влажность воздуха и т.д.

3. Графический способ задания функции.

Графический способ задания функции состоит в изображении на координатной плоскости точек (х, у) посредством технических устройств. Графическим способом задания функции в математическом анализе не пользуются, но к графической иллюстрации аналитически заданных функций прибегают всегда.



Похожие статьи