Синильная кислота: формула, свойства, токсичность, метаболизм. Особенности изолирования из биообъектов. Химические реакции обнаружения синильной кислоты в дистилляте. Температура кипения синильной кислоты Синильная кислота плотность

Синильная кислота (или цианистоводородная кислота, цианистый водород, цианистоводород) представляет собой ядовитое химическое соединение, которое оказывает непоправимое влияние на лёгкие и центральную нервную систему, начинается инактивация тканевого дыхания, что в результате приводит к тканевой гипоксии (снижается эффективность усвоения кислорода клетками по причине блокировки ключевых ферментов, уровень перекиси водорода достигает критической отметки, что сказывается на целостности клеток и тканей).

Источник цианистого водорода имеет не только химическое, но и естественное происхождение. Во многих продуктах, фруктах, ягодах и растениях находится это химическое вещество. Например, горький миндаль, черемуха, семена персика, абрикосовые и вишневые косточки.

Как часто мы закрывали глаза на детское баловство с твёрдой сердцевиной фруктовых плодов?

Что самое ужасное, в один миг баловство может обернуться печальными последствиями. И оказаться в больнице - не самое страшное, чем может закончиться история с отравлением синильной кислотой.

И все же, что такое синильная кислота?

Это бесцветное ядовитое химическое вещество, отличительным признаком которого является характерный горький запах. В связи с этим косточки продуктов, в сердцевине которых находятся токсины подобного рода, имеют специфический горьковатый привкус.

Одновременно с этим цианистый водородо является и инсектицидом, вырабатываемый растениями для собственной защиты от вредителей.

Одним из источников ядовитого вещества являются семена фруктов и ягод: абрикосов, персиков, яблок и т.д. В их составе содержится амигдалин, синтез которого происходит во время созревания пруназина.

Его количество и степень накопления напрямую зависит от активности бета-гликозидаз, влияющие на расщепление пруназина и амигдалина. В сладких и горьких сортах содержание генцибиозид нитрила миндальной кислоты (амигдалина) заметно отличается.

Именно наличие этого вещества способствует высвобождению цианистого водорода, а значит, и появлению характерной горечи.

Стоит заметить, что амигдалин в перечисленных выше фруктах и ягодах содержится в разной степени. В горьком сорте миндаля и семенах персика, находящихся на первом месте по количеству амигдалина, содержится до 3% ядовитого вещества. В семени абрикоса, вишни и яблок представлено этого химического соединения в разы меньше, но риск отравления всё же сохраняется.

Отличным выходом из сложившейся ситуации является термическая обработка, во время которой разрушаются все ядовитые вещества. При заморозке фруктов и ягод также нужно соблюдать аккуратность и осторожность: нельзя хранить упомянутые раньше фрукты и ягоды дольше 1 года (иначе незамедлительно активируется процесс разрушения амигдалина, в результате которого и выделяется синильная кислота).

В том числе запрещается быстро размораживать заморозку, что также можно поспособствовать увеличению уровня циановодорода.

Давать миндаль, семя яблок, абрикосов и т.д. детям строго запрещено, для ребенка велик риск летального исхода уже после 10 съеденного ореха. Для взрослого цифра начинается от 50 штук. Чтобы оказаться в зоне риска, достаточно употребить в пищу 50 вишнёвых и персиковых косточек, или 200 яблочных семечек, или 40 штук горького сорта миндаля.

Но, что удивительно - вино из винограда не имеет отрицательного воздействия на человеческий организм, так как эти ягоды не высвобождают синильную кислоту. То же самое касается варенья и компотов, только причина кроется в термической обработке и добавлении сахара.

Высока угроза отравления и на территории производства по изготовлению пластмасс. Средства уничтожения насекомых, акриловые полимеры, пестициды и ароматизаторы также не лишены токсинов - во влажных условиях нестойкие соединения моментально вступают в реакцию с воздухом и начинается разложение с выделением ядовитого газа. Имеется доля синильной кислоты и в табачном дыме.

Отравление синильной кислотой

Интоксикация организма происходит несколькими путями: посредством вдыхания паров или заражения химическим веществом открытого участка кожного покрова, попадания концентрированного аэрозоля желудочно-кишечный тракт, употребление большой дозы семян некоторых фруктов и ягод или употребление домашних настоек, вин, изготовленных без отсеивания косточек.

Как и у любого заболевания, об отравлении синильной кислотой организм сигнализирует рядом симптомов, на основании которых следует делать выводы и принимать соответствующее решение. Тяжесть и скорость протекания реакции организма на ядовитое вещество различно и от проникновения цианистого водорода внутрь.

Проникновение ядовитых паров посредством дыхательных путей человек переносит в разы тяжелее, а первые симптомы можно наблюдать уже по прошествии нескольких минут. Употребление большой дозы вышеупомянутых орехов пищеварительный тракт выдерживает не больше часа, чем начинает подавать предупреждающие сигналы о произошедшем сбое.

О лёгкой степени отравления может свидетельствовать наличие покраснения слизистых оболочек, судороги, одышка, общая слабость, першение и увеличение слюноотделения, тошнота и частые позывы в туалет.

Участился пульс? Появились боли в области грудины?

Зафиксировано нарушение ритма дыхания и психоэмоциональное возбуждение? Это первые признаки того, что отравление проходит в тяжелой форме.

Не редко отравлению сопутствует возникновение таких симптомов, как головокружение, паническое состояние, расширение зрачков, нетвердость походки и внезапное возникновение головной боли. В дальнейшем состояние больного будет ухудшаться все больше вплоть до мгновенной потери сознания, наступления комы и летального исхода.

Чем быстрее посторонними будут замечены первые сигналы организма об отравлении, тем больше шансов спасти человека и избежать смертельного исхода.

Первая помощь при отравлении синильной кислотой

Именно от своевременной и грамотной первой помощи зависит дальнейшее протекание отравления. Рекомендуется немедленно отстранить пострадавшего от ядовитого источника и обеспечить поток свежего воздуха.

Синильная кислота мгновенно распространяется по всему организму, отравляя его ядовитыми соединениями и оказывая отрицательное воздействие. Во избежание этого требуется немедленно положить человека в горизонтальное положение и нейтрализовать кислоту подручными антидотами во избежание ее дальнейшего распространения.

Для этих целей можно воспользоваться пищевой содой, активированным углем, сахарным раствором или парами нашатыря.

Если оказанные процедуры дали положительный эффект, будет не лишним перевернуть больного на бок и вызвать рвотный рефлекс - таким способом можно избежать попадания жидких масс в дыхательные пути.

В этом положении следует промыть желудок слабым раствором марганцовки или раствором тиосульфата натрия (5%) и гидрокарбоната натрия (2%). При этом человек обязательно должен быть в сознании, в ином случае данная процедура противопоказана.

Если оказанные процедуры наоборот не дали ожидаемого эффекта, без промедления обращаться в ближайшую больницу для принятия срочных реанимационных мер. В случае возникновения признаков клинической смерти (отсутствие сознания, дыхания, пульса и реакции зрачков на свет), реанимационные меры требуется проводить собственноручно.

Для этого необходимо максимально аккуратно избавить больного от одежды, а пораженные кислотой участки тела осторожно вытереть тряпкой, смоченной мыльным раствором. Запрещено размазывать ядовитые вещества по телу - в таком случае увеличится скорость распространения по организму, что усугубит ситуацию.

Профилактика отравления синильной кислотой

Во избежание интоксикации ядовитыми веществами не стоит забывать о нескольких заученных с детства правил.

Неоднократное проветривание помещения значительно снизит уровень токсинов в воздухе и риск отравления - организм всегда справится с маленьким количество кислоты естественным путём без проявления клинической картины симптомов.

При работе с химическими соединениями не следует забывать о следовании инструкциям техники безопасности, а также о соблюдении правил личной гигиены во избежания проникновения кислоты через кожный покров: в особенности этому будет способствовать активное потоотделение и тяжелое физическое напряжение.

Не забывайте регулярно контролировать уровень токсических веществ в помещении - лучше быть уверенным в безопасности пребывания в комнате, нежели в результате постепенно приближаться к интоксикации синильной кислотой.

И обязательно проводите тепловую обработку семенам и орехам, употребление которых может увеличить количество цианистоводородной кислоты в организме.

Перепост:

«Я достал из поставца шкатулку с цианистым калием и положил ее на стол рядом с пирожными. Доктор Лазаверт надел резиновые перчатки, взял из нее несколько кристалликов яда, истер в порошок. Затем снял верхушку пирожных, посыпал начинку порошком в количестве, способном, по его словам, убить слона. В комнате царило молчанье. Мы взволнованно следили за его действиями. Осталось положить яд в бокалы. Решили класть в последний момент, чтобы отрава не улетучилась...»

Это не отрывок детективного романа, а слова принадлежат не вымышленному персонажу. Здесь приведены воспоминания князя Феликса Юсупова о подготовке одного из известнейших в российской истории преступлений — убийства Григория Распутина. Произошло оно в 1916 году. Если до середины XIX века главным помощником отравителей был мышьяк, то после внедрения в криминалистическую практику метода Марша (см. статью «Мышь, мышьяк и Кале-сыщик» , «Химия и жизни», № 2, 2011) к мышьяку прибегали всё реже. Зато все чаще стал использоваться цианид калия, или цианистый калий (цианистый кали, как его называли раньше).

Что это такое...

Цианид калия — это

соль циановодородной, или синильной, кислоты Н-СN, его состав отражает формула KCN. Синильную кислоту в виде водного раствора впервые получил шведский химик Карл Вильгельм Шееле в 1782 году из желтой кровяной соли K 4 . Читатель уже знает, что Шееле разработал первый метод качественного определения мышьяка (см. «Мышь, мышьяк и Кале-сыщик»). Он же открыл химические элементы хлор, марганец, кислород, молибден и вольфрам, получил мышьяковую кислоту и арсин, оксид бария и другие неорганические вещества. Свыше половины известных в XVIII веке органических соединений также выделил и описал Карл Шееле.

Безводную синильную кислоту получил в 1811 году Жозеф Луи Гей-Люссак. Он же установил ее состав. Циановодород — это бесцветная летучая жидкость, закипающая при температуре 26°C. Корень «циан» в его названии (от греч. — лазурный) и корень русского названия «синильная кислота» сходны по смыслу. Это не случайно. Ионы CN - образуют с ионами железа соединения синего цвета, в том числе состава KFe. Это вещество используется в качестве пигмента гуаши, акварельных и прочих красок под названиями «берлинская лазурь», «милори», «прусская синяя». Возможно, вам эти краски знакомы по наборам гуаши или акварели.

Авторы детективов дружно утверждают, что синильная кислота и ее соли имеют «запах горького миндаля». Конечно, синильную кислоту они не нюхали (равно как и автор этой статьи). Информация о «запахе горького миндаля» почерпнута из справочников и энциклопедий. Есть и другие мнения. Автор «Химии и жизни» А. Клещенко, окончивший химический факультет МГУ и знакомый с синильной кислотой не понаслышке, в статье «Как отравить героя» («Химия и жизнь», 1999, № 2) пишет, что запах синильной кислоты не похож на миндальный.

Авторы детективов пали жертвами давнего заблуждения. Но с другой стороны, справочник «Вредные химические вещества» тоже специалисты составляли. Можно было бы, в конце концов, получить синильную кислоту и понюхать ее. Но что-то страшновато!

Остается предположить, что восприятие запахов — дело индивидуальное. И то, что одному напоминает запах миндаля, для другого не имеет с миндалем ничего общего. Эту мысль подтверждает Питер Макиннис в книге «Тихие убийцы. Всемирная история ядов и отравлений»: «В детективных романах непременно упоминается аромат горького миндаля, который связан с цианистым натрием, цианистым калием и цианистым водородом (синильной кислотой), однако лишь 40-60 процентов обычных людей способны хотя бы почувствовать этот специфический запах». Тем более что житель средней полосы России с горьким миндалем, как правило, не знаком: его семена, в отличие от сладкого миндаля, в пищу не употребляют и в продажу не поступают.

...и зачем его едят?

К миндалю и его запаху вернемся позже. А сейчас — о цианистом калии. В 1845 году немецкий химик Роберт Бунзен, один из авторов метода спектрального анализа, получил цианид калия и разработал способ его промышленного производства. Если сегодня это вещество находится в химических лабораториях и на производстве под строгим контролем, то на рубеже XIX и XX веков цианистый калий был доступен любому (включая злоумышленников). Так, в рассказе Агаты Кристи «Осиное гнездо» цианистый калий купили в аптеке якобы для уничтожения ос. Преступление сорвалось только благодаря вмешательству Эркюля Пуаро.

Энтомологи использовали (и до сих пор используют) небольшие количества цианида калия в морилках для насекомых. Несколько кристаллов яда кладут на дно морилки и заливают гипсом. Цианид медленно реагирует с углекислым газом и парами воды, выделяя циановодород. Насекомые вдыхают отраву и погибают. Заправленная таким образом морилка действует более года. Нобелевский лауреат Лайнус Полинг рассказывал, как его снабжал цианистым калием для изготовления морилок завхоз стоматологического колледжа. Он же и научил мальчика обращаться с этим опасным веществом. Дело было в 1912 году. Как видим, в те годы к хранению «короля ядов» относились довольно легкомысленно.

Откуда у цианистого калия такая популярность среди преступников настоящих и вымышленных? Причины понять нетрудно: вещество хорошо растворимо в воде, не обладает выраженным вкусом, летальная (смертельная) доза невелика — в среднем достаточно 0,12 г, хотя индивидуальная восприимчивость к яду, конечно, различается. Высокая доза цианида калия вызывает почти мгновенную потерю сознания, а затем паралич дыхания. Добавим сюда доступность вещества в начале XIX века, и выбор заговорщиков-убийц Распутина становится понятным.

Синильная кислота так же ядовита, как и цианиды, но неудобна в применении: имеет специфический запах (у цианидов он очень слаб) и не может быть использована незаметно для жертвы, к тому же из-за высокой летучести опасна для всех окружающих, а не только для того, кому она предназначена. Но и она находила применение как отравляющее вещество. Во времена Первой мировой войны синильная кислота была на вооружении французской армии. В некоторых штатах США ее использовали для казни преступников в «газовых комнатах». Применяется она также и для обработки вагонов, амбаров, судов, заселенных насекомыми, — принцип тот же, что и у морилки юного Полинга.

Как он действует?

Пора разобраться, как же действует такое нехитрое по составу вещество на организм. Еще в 60-х годах XIX века было установлено, что венозная кровь отравленных цианидами животных имеет алый цвет. Это свойственно, если вы помните, артериальной крови, богатой кислородом. Значит, отравленный цианидами организм не способен усваивать кислород. Синильная кислота и цианиды каким-то образом тормозят процесс тканевого окисления. Оксигемоглобин (соединение гемоглобина с кислородом) впустую циркулирует по организму, не отдавая кислород тканям.

Причину этого явления разгадал немецкий биохимик Отто Варбург в конце 20-х годов ХХ века. При тканевом дыхании кислород должен принять электроны от вещества, подвергающегося окислению. В процессе передачи электронов участвуют ферменты под общим название «цитохромы». Это белковые молекулы, содержащие небелковый геминовый фрагмент, связанный с ионом железа. Цитохром, содержащий ион Fe 3+ , принимает электрон от окисляемого вещества и превращается в ион Fe 2+ . Тот, в свою очередь, передает электрон молекуле следующего цитохрома, окисляясь до Fe 3+ . Так электрон передается по цепи цитохромов, подобно мячу, который «цепочка баскетболистов передает от одного игрока к другому, неумолимо приближая его к корзине (кислороду)». Так описал работу ферментов тканевого окисления английский биохимик Стивен Роуз. Последний игрок в цепочке, тот, который забрасывает мяч в кислородную корзину, называется цитохромоксидазой. В окисленной форме он содержит ион Fe 3+ . Эта форма цитохромоксидазы и служит мишенью для цианид-ионов, которые могут образовывать ковалентные связи с катионами металлов и предпочитают именно Fe 3+ .

Связывая цитохромоксидазу, цианид-ионы выводят молекулы этого фермента из окислительной цепи, и передача электрона кислороду срывается, то есть кислород клеткой не усваивается. Был обнаружен интересный факт: ежики, находящиеся в зимней спячке, способны переносить дозы цианида, во много раз превосходящие смертельную. А причина в том, что при низкой температуре усвоение кислорода организмом замедляется, как и все химические процессы. Поэтому уменьшение количества фермента переносится легче.

У читателей детективов иногда возникает представление, что цианистый калий — самое ядовитое вещество на Земле. Вовсе нет! Никотин и стрихнин (вещества растительного происхождения) в десятки раз более ядовиты. О мере ядовитости можно судить по массе токсина на 1 кг веса лабораторного животного, которая требуется для наступления смерти в 50% случаев (LD 50). Для цианида калия она равна 10 мг/кг, а для никотина — 0,3. Далее идут: диоксин, яд искусственного происхождения — 0,022 мг/кг; тетродотоксин, выделяемый рыбой фугу, — 0,01 мг/кг; батрахотоксин, выделяемый колумбийской древесной лягушкой, — 0,002 мг/кг; рицин, содержащийся в семенах клещевины, — 0,0001 мг/кг (подпольную лабораторию террористов по изготовлению рицина раскрыли британские спецслужбы в 2003 году); β-бунгаротоксин, яд южноазиатской змеи бунгарос, — 0,000019 мг/кг; токсин столбняка — 0,000001 мг/кг.

Наиболее ядовит ботулинический токсин (0,0000003 мг/кг), который вырабатывается бактериями определенного вида, развивающимися в анаэробных условиях (без доступа воздуха) в консервах или колбасе. Разумеется, сначала они должны туда попасть. И время от времени попадают, особенно в консервы домашнего производства. Домашняя колбаса сейчас встречается редко, а когда-то именно она нередко была источником ботулизма. Даже название болезни и ее возбудителя произошло от латинского botulus — «колбаса». Ботулиническая бацилла в процессе жизнедеятельности выделяет не только токсин, но и газообразные вещества. Поэтому вздувшиеся консервные банки не стоит вскрывать.

Ботулинический токсин — нейротоксин. Он нарушает работу нервных клеток, которые передают импульс к мышцам. Мышцы перестают сокращаться, наступает паралич. Но если взять токсин в низкой концентрации и воздействовать точечно на определенные мышцы, организм в целом не пострадает, зато мышца окажется расслабленной. Препарат и называется «ботокс» (ботулинический токсин), это и лекарство при мышечных спазмах, и косметическое средство для разглаживания морщин.

Как видим, самые ядовитые на свете вещества создала природа. Добывать их гораздо сложнее, чем получить нехитрое соединение КСN Понятно, что цианид калия и дешевле, и доступнее.

Однако не всегда применение цианистого калия в преступных целях дает гарантированный результат. Посмотрим, что пишет Феликс Юсупов о событиях, происходивших в подвале на Мойке студеной декабрьской ночью 1916 году:

«...Я предложил ему эклеры с цианистым калием. Он сперва отказался.

— Не хочу, — сказал он, — больно сладкие.

Однако взял один, потом еще один. Я смотрел с ужасом. Яд должен был подействовать тут же, но, к изумлению моему, Распутин продолжал разговаривать, как ни в чем не бывало. Тогда я предложил ему наших домашних крымских вин...

Я стоял возле него и следил за каждым его движением, ожидая, что он вот-вот рухнет...

Но он пил, чмокал, смаковал вино, как настоящие знатоки. Ничего не изменилось в лице его. Временами он подносил руку к горлу, точно в глотке у него спазм. Вдруг он встал и сделал несколько шагов. На мой вопрос, что с ним, он ответил:

— А ничего. В горле щекотка.

Яд, однако, не действовал. «Старец» спокойно ходил по комнате. Я взял другой бокал с ядом, налил и подал ему.

Он выпил его. Никакого впечатления. На подносе оставался последний, третий бокал.

В отчаянии я налил и себе, чтобы не отпускать Распутина от вина...»

Все напрасно. Феликс Юсупов поднялся к себе в кабинет. «...Дмитрий, Сухотин и Пуришкевич, едва я вошел, кинулись навстречу с вопросами:

— Ну что? Готово? Кончено?

— Яд не подействовал, — сказал я. Все потрясенно замолчали.

— Не может быть! — вскричал Дмитрий.

— Доза слоновья! Он все проглотил? — спросили остальные.

— Все, — сказал я».

Но все-таки цианид калия оказал некоторое действие на организм старца: «Голову он свесил, дышал прерывисто...

— Вам нездоровится? — спросил я.

— Да, голова тяжелая и в брюхе жжет. Ну-ка, налей маленько. Авось полегчает».

Действительно, если доза цианида не столь велика, чтобы вызвать мгновенную смерть, на начальной стадии отравления ощущаются царапанье в горле, горький вкус во рту, онемение рта и зева, покраснение глаз, мышечная слабость, головокружение, пошатывание, головная боль, сердцебиение, тошнота, рвота. Дыхание несколько учащенное, затем делается более глубоким. Некоторые из этих симптомов Юсупов заметил у Распутина. Если на этой стадии отравления поступление яда в организм прекращается, симптомы исчезают. Очевидно, отравы оказалось для Распутина маловато. Стоит разобраться в причинах, ведь организаторы преступления рассчитали «слоновью» дозу. Кстати, о слонах. Валентин Катаев в своей книге «Разбитая жизнь, или Волшебный рог Оберона» описывает случай со слоном и цианистым калием.

В дореволюционные времена в одесском цирке-шапито Лорбербаума впал в ярость слон Ямбо. Поведение взбесившегося слона стало опасным, и его решили отравить. Как вы думаете чем? «Его решили отравить цианистым кали, положенным в пирожные, до которых Ямбо был большой охотник», — пишет Катаев. И далее: «Я этого не видел, но живо представил себе, как извозчик подъезжает к балагану Лорбербаума и как служители вносят пирожные в балаган, и там специальная врачебная комиссия... с величайшими предосторожностями, надев черные гуттаперчевые перчатки, при помощи пинцетов начиняют пирожные кристалликами цианистого кали...» Не правда ли, очень напоминает манипуляции доктора Лазоверта? Следует только добавить, что воображаемую картину рисует себе мальчик-гимназист. Не случайно этот мальчик впоследствии стал известным писателем!

Но вернемся к Ямбо:

«О, как живо рисовало мое воображение эту картину... Я стонал в полусне... Тошнота подступала к сердцу. Я чувствовал себя отравленным цианистым кали... Мне казалось, что я умираю... Я встал с постели и первое, что я сделал, это схватил «Одесский листок», уверенный, что прочту о смерти слона. Ничего подобного!

Слон, съевший пирожные, начиненные цианистым кали, оказывается, до сих пор жив-живехонек и, по-видимому, не собирается умирать. Яд не подействовал на него. Слон стал лишь еще более буйным».

О дальнейших событиях, произошедших со слоном и с Распутиным, можно прочитать в книгах. А нас интересуют причины «необъяснимого нонсенса», как писал о случае со слоном «Одесский листок». Таких причин — две.

Во-первых, HCN — очень слабая кислота. Такая кислота может быть вытеснена из своей соли более сильной кислотой и улетучиться. Даже угольная кислота сильнее синильной. А угольная кислота образуется при растворении углекислого газа в воде. То есть под действием влажного воздуха, содержащего и воду, и углекислый газ, цианид калия постепенно превращается в карбонат:

KCN + H 2 O + CO 2 = HCN + KHCO 3

Если цианид калия, который использовали в описанных случаях, долго хранился в контакте с влажным воздухом, он мог и не подействовать.

Во-вторых, соль слабой циановодородной кислоты подвержена гидролизу:

KCN + H 2 O = HCN + КОН.

Выделяющийся циановодород способен присоединяться к молекуле глюкозы и других сахаров, содержащих карбонильную группу:

СН 2 ОН—СНОН—СНОН—СНОН—СНОН—СН=О + HC≡N →
СН 2 ОН—СНОН—СНОН—СНОН—СНОН—СНОН—С≡N

Вещества, образующиеся в результате присоединения циановодорода по карбонильной группе, называют циангидринами. Глюкоза — продукт гидролиза сахарозы. Люди, работающие с цианидами, знают, что для профилактики отравления следует держать за щекой кусочек сахара. Глюкоза связывает цианиды, находящиеся в крови. Та часть яда, которая уже проникла в клеточное ядро, где в митохондриях происходит тканевое окисление, для сахаров недоступна. Если у животного повышенное содержание глюкозы в крови, оно более устойчиво к отравлению цианидами, как, например, птицы. То же наблюдается и у больных сахарным диабетом. При поступлении в организм небольших порций цианидов организм может обезвредить их самостоятельно с помощью глюкозы, содержащейся в крови. А при отравлении в качестве антидота используют 5%-ный или 40%-ный растворы глюкозы, вводимые внутривенно. Но это средство действует медленно.

И для Распутина, и для слона Ямбо цианидом калия начинили пирожные, содержащие сахар. Съедены они были не сразу, а тем временем цианид калия выделил синильную кислоту, и она присоединилась к глюкозе. Часть цианида определенно успела обезвредиться. Добавим, что на сытый желудок отравление цианидами происходит медленнее.

Есть и другие противоядия к цианидам. Во-первых, это соединения, легко отщепляющие серу. В организме содержатся такие вещества — аминокислоты цистеин, глутатион. Они, как и глюкоза, помогают организму справиться с малыми дозами цианидов. Если же доза большая, в кровь или мышцу можно специально ввести 30%-ный раствор тиосульфата натрия Na 2 S 2 O 3 (или Na 2 SO 3 S). Он реагирует в присутствии кислорода и фермента роданазы с синильной кислотой и цианидами по схеме:

2HCN + 2Na 2 S 2 O 3 + О 2 = 2НNCS + 2Na 2 SO 4

При этом образуются тиоцианаты (роданиды), гораздо менее вредные для организма, чем цианиды. Если цианиды и синильная кислота относятся к первому классу опасности, то тиоцианаты — вещества второго класса. Они отрицательно влияют на печень, почки, вызывают гастрит, а также угнетают щитовидную железу. У людей, систематически испытывающих воздействие небольших доз цианидов, возникают заболевания щитовидной железы, вызванные постоянным образованием тиоцианатов из цианидов. Тиосульфат в реакции с цианидами более активен, чем глюкоза, но тоже действует медленно. Обычно его используют в комбинации с другими антицианидами.

Второй тип антидотов против цианидов — это так называемые метгемоглобинобразователи. Название говорит о том, что эти вещества образуют из гемоглобина метгемоглобин (см. «Химию и жизнь», 2010, № 10). Молекула гемоглобина содержит четыре иона Fe 2+ , а в метгемоглобине они окислены до Fe 3+ . Поэтому он не способен обратимо связывать кислород Fe 3+ и не переносит его по организму. Это может произойти под действием веществ-окислителей (среди них оксиды азота, нитраты и нитриты, нитроглицерин и многие другие). Ясно, что это яды, «выводящие из строя» гемоглобин и вызывающие гипоксию (кислородную недостаточность). «Порченный» этими ядами гемоглобин не переносит кислород, но зато способен связывать цианид-ионы, которые испытывают непреодолимое влечение к иону Fe 3+ . Попавший в кровь цианид связывается метгемоглобином и не успевает попасть в митохондрии клеточных ядер, где неизбежно «перепортит» всю цитохромоксидазу. А это гораздо хуже, чем «испорченный» гемоглобин.

Американский писатель, биохимик и популяризатор науки Айзек Азимов объясняет это так: «Дело в том, что в организме имеется очень большое количество гемоглобина... Геминовые же ферменты присутствуют в очень незначительных количествах. Уже нескольких капель цианида оказывается достаточно, чтобы разрушить большую часть этих ферментов. Если это случается, конвейер, окисляющий горючие вещества организма, останавливается. Через несколько минут клетки тела погибают от недостатка кислорода столь же неотвратимо, как если бы кто-нибудь схватил человека за горло и попросту задушил его».

В этом случае мы наблюдаем поучительную картину: одни яды, вызывающие гемическую (кровяную) гипоксию, тормозят действие других ядов, тоже вызывающих гипоксию, но другого типа. Прямая иллюстрация русского идиоматического выражения: «вышибать клин клином». Главное — не переборщить с метгемоглобинобразователем, чтобы не поменять шило на мыло. Содержание метгемоглобина в крови не должно превышать 25-30% от общей массы гемоглобина. В отличие от глюкозы или тиосульфата метгемоглобин не просто связывает цианид-ионы, циркулирующие в крови, но и помогает «испорченному» цианидами дыхательному ферменту освободиться от цианид-ионов. Это происходит благодаря тому, что процесс соединения цианид-ионов с цитохромоксидазой обратим. Под действием метгемоглобина уменьшается концентрация этих ионов в плазме крови — а в результате новые цианид-ионы отщепляются от комплексного соединения с цитохромоксидазой.

Реакция образования цианметгемоглобина тоже обратима, поэтому со временем цианид-ионы снова поступают в кровь. Чтобы связать их, одновременно с антидотом (обычно нитритом) в кровь вводят раствор тиосульфата. Наиболее эффективна смесь нитрита натрия с тиосульфатом натрия. Она способна помочь даже на последних стадиях отравления цианидами — судорожной и паралитической.

Где с ним можно встретиться?

Имеет ли шанс обычный человек, не герой детективного романа, отравиться цианидом калия или синильной кислотой? Как любые вещества первого класса опасности, цианиды хранятся с особыми предосторожностями и недоступны рядовому злоумышленнику, если только он не сотрудник специализированной лаборатории или цеха. Да и там подобные вещества на строгом учете. Однако отравление цианидами может произойти и без участия злодея.

Во-первых, цианиды встречаются в природе. Цианид-ионы входят в состав витамина В 12 (цианокоболамина). Даже в плазме крови здорового человека на 1 л приходится 140 мкг цианид-ионов. В крови курящих людей содержание цианидов в два с лишним раза больше. Но такие концентрации организм переносит безболезненно. Другое дело, если с пищей поступят цианиды, содержащиеся в некоторых растениях. Тут возможно серьезное отравление. В ряду источников синильной кислоты, доступных каждому, можно назвать семена абрикосов, персиков, вишен, горького миндаля. В них содержится гликозид амигдалин.

Амигдалин принадлежит к группе цианогенных гликозидов, образующих при гидролизе синильную кислоту. Этот гликозид был выделен из семян горького миндаля, за что и получил свое название (греч. μ — «миндаль»). Молекула амигдалина, как и положено гликозиду, состоит из сахаристой части, или гликона (в данном случае это остаток дисахарида генцибиозы), и несахаристой части, или агликона. В остатке генцибиозы, в свою очередь, гликозидной связью связаны два остатка β-глюкозы. В роли агликона выступает циангидрин бензальдегида — манделонитрил, вернее, его остаток, связанный с гликоном гликозидной связью.

При гидролизе молекула амигдалина распадается на две молекулы глюкозы, молекулу бензальдегида и молекулу синильной кислоты. Это происходит в кислой среде или под действием фермента эмульсина, содержащегося в косточке. Из-за образования синильной кислоты один грамм амигдалина — смертельная доза. Это соответствует 100 г ядрышек абрикосовых косточек. Известны случаи отравления детей, съевших по 10-12 косточек абрикоса.

В горьком миндале содержание амигдалина в три — пять раз выше, но есть его косточки вряд ли захочется. В крайнем случае следует подвергнуть их нагреванию. При этом разрушится фермент эмульсин, без которого гидролиз не пойдет. Именно благодаря амигдалину семена горького миндаля имеют свой горький вкус и миндальный запах. Точнее, миндальный запах имеет не сам амигдалин, а продукты его гидролиза — бензальдегид и синильная кислота (запах синильной кислоты мы уже обсуждали, а вот запах бензальдегида, без сомнения, миндальный).

Во-вторых, отравление цианидами может произойти на производстве, где они используются для создания гальванических покрытий или для извлечения благородных металлов из руд. Ионы золота и платины образуют с цианид-ионами прочные комплексные соединения. Благородные металлы не способны окисляться кислородом, потому что их оксиды непрочны. Но если кислород действует на эти металлы в растворе цианида натрия или калия, то образующиеся при окислении ионы металла связываются цианид-ионами в прочный комплексный ион и металл полностью окисляется. Сам цианид натрия благородных металлов не окисляет, но помогает окислителю осуществить его миссию:

4Au + 8NaCN + 2H 2 O = 4Na + 4NaOH.

Рабочие, занятые в таких производствах, испытывают хроническое воздействие цианидов. Цианиды ядовиты и при попадании в желудок, и при вдыхании пыли и брызг при обслуживании гальванических ванн, и даже при попадании на кожу, особенно если на ней есть ранки. Недаром доктор Лазоверт надевал резиновые перчатки. Был случай смертельного отравления горячей смесью, содержащей 80% которая попала рабочему на кожу.

Даже не занятые в горно-обогатительном или на гальваническом производстве люди могут пострадать от цианидов. Известны случаи, когда в реки попадали сточные воды таких производств. В 2000, 2001 и 2004 году Европа была встревожена выбросами цианидов в воды Дуная на территории Румынии и Венгрии. Это приводило к тяжелым последствиям для обитателей рек и жителей прибрежных поселков. Отмечались случаи отравления рыбой, выловленной в Дунае. Поэтому нелишне знать меры предосторожности при обращении с цианидами. И читать в детективах про цианистый калий будет интереснее.

Список используемой литературы:
Азимов А. Химические агенты жизни. М.: Издательство иностранной литературы, 1958.
Вредные химические вещества. Справочник. Л.: Химия, 1988.
Катаев В. Разбитая жизнь, или Волшебный рог Оберона. М.: Советский писатель, 1983.
Оксенгендлер Г. И. Яды и противоядия. Л.: Наука, 1982.
Роуз С. Химия жизни. М.: Мир, 1969.
Энциклопедия для детей «Аванта+». Т.17. Химия. М.: Аванта+, 2001.
Юсупов Ф. Мемуары. М.: Захаров, 2004.

Пара комментариев читателей, показавшихся мне важными:
1. Хочу заметить, что миндаль не μ, а Amygdalus или αμυγδαλιάς, если уж по гречески.
2. Всё, конечно, замечательно, но почему автор засунул несчастные митохондрии в ядро? Да ещё и повторил два раза, чтобы читатель хорошо запомнил. А редактор пропустил. Два раза.

Синильная кислота (цианистоводородная кислота) -- газ или бесцветная жидкость (г. кип. 25,6 °С, т. пл.-- 13,3 °С, плотность 0,699), имеет запах горького миндаля, легко смешивается с водой и с рядом органических растворителей. При -- 13,3 °С синильная кислота затвердевает, образуя волокнистую кристаллическую массу. Синильная кислота является слабой кислотой. Ее вытесняют из солей даже углекислота и слабые органические кислоты.

В свободном состоянии в природе синильная кислота не встречается. Она встречается в виде химических соединений, к числу которых относятся гликозиды (амигдалин, пруназин, дур-рин и др.). Амигдалин содержится в семенах горького миндаля, косточках персиков, абрикосов, слив, вишен, в листьях лавровишни и др. Этот гликозид под влиянием фермента эмульсина, а также под влиянием кислот разлагается на глюкозу, бензальдегид и синильную кислоту. Пруназин содержится в пенсильванской вишне, а дуррин -- в просе. Синильная кислота может образовываться при горении целлулоида. Следы этой кислоты содержатся в табачном дыме.

Соли синильной кислоты (цианиды) легко гидролизуются d воде. При хранении водных растворов цианидовпри доступе диоксида углерода они разлагаются:

KCN + H 2 O + СО 2 ---> HCN + КНСО 3 KCN + 2H 2 O ---> NH 3 + НСООК

В водных растворах разлагаются не только цианиды, но и сама синильная кислота:

HCN + 2Н 2 О ---> HCOONH 4 .

Применение. Действие на организм. Синильная кислота и ее соли применяются для синтеза ряда органических соединений, при добыче золота, для дезинфекции и дезинсекции, для борьбы с вредителями растений и т. д. Из соединений синильной кислоты, применяемых в народном хозяйстве, большое значение имеют цианиды натрия и калия.

Синильная кислота и ее соли очень ядовиты. По токсичности синильная кислота превосходит многие известные яды. Поэтому с синильной кислотой и ее солями следует обращаться очень осторожно. Следует помнить, что от прибавления сильных кислот к цианидам сразу же выделяется синильная кислота, которая может быть причиной тяжелых, а иногда и смертельных отравлений. Отравления могут давать и различные соединения синильной кислоты (хлорциан, бромциан и др.). Отмечены случаи отравления людей семенами миндаля. По данным М. Д. Швайковой (1975), смерть у взрослых может наступить при поедании 40--60 штук, а у детей-- 10--12 штук семян миндаля. При вдыхании больших концентраций синильной кислоты смерть может наступить мгновенно от остановки дыхания и сердца. Учитывая высокую токсичность синильной кислоты и ее солей, работать с ними в лаборатории можно только в вытяжном шкафу с хорошей вентиляцией.

Синильная кислота угнетает внутриклеточные железосодержащие дыхательные ферменты. При угнетении цитохромоксидазы синильной кислотой клетки организма не усваивают кислород, поступающий с кровью. В результате этого наступает клеточное кислородное голодание, несмотря на то, что кровь насыщенна кислородом. Цианиды также могут блокировать гемоглобин крови, нарушая его функции.

Синильная кислота может поступать в организм с вдыхаемым воздухом и частично через неповрежденную кожу, а цианиды -- через пищевой канал.

Метаболизм. Метаболитом синильной кислоты является тиоцианат (роданид), который образуется в организме при конъюгации цианидов с серой под влиянием фермента роданазы.

Обнаружение синильной кислоты и цианидов.

Изолирование синильной кислоты и цианидов из биологического материала производят перегонкой с водяным паром. Для этой цели собирают 3--5 мл первого дистиллята в пробирку, содержащую 2 мл 2 %-го раствора гидроксида натрия. Поскольку синильная кислота быстро разлагается в организме, исследование биологического материала на наличие этой кислоты и ее солей желательно проводить сразу же после вскрытия трупов.

При отравлении синильной кислотой и цианидами на химико-токсикологическое исследование берут желудок с содержимым, печень и почки. Ввиду быстрого разложения синильной кислоты и цианидов в тканях организма эти яды можно обнаружить в содержимом желудка и не обнаружить в паренхиматозных органах.

При заключении об отравлении синильной кислотой и цианидами (на основании результатов химико-токсикологического анализа биологического материала) следует учитывать то, что цианиды в небольших количествах (около 6 мкг %) могут быть в моче лиц, не подвергавшихся воздействию этих соединений. В моче курящих количество цианидов может быть почти в 3 раза больше, чем в крови некурящих. В крови цианиды могут образовываться и посмертно.

Для обнаружения синильной кислоты в дистиллятах применяют несколько реакций, из которых наиболее доказательной является реакция образования берлинской лазури. Другие описанные ниже реакции используют как вспомогательные, а также для обнаружения цианидов в порошках, жидкостях и в других объектах.

Реакции на синильную кислоту и ее соли выполняют под тягой.

Реакция образования берлинской лазури. От прибавления сульфата железа (II) к щелочному раствору цианидов, образуется цианид железа (II), который при взаимодействии с избытком цианидов, а затем с сульфатом или хлоридом железа (III) образует берлинскую лазурь:

При образовании берлинской лазури происходят и побочные реакции между солями железа и щелочью(образуются гидроксиды железа).

Для растворения гидроксидов железа и нейтрализации избытка щелочи прибавляют кислоту до кислойреакции. Большой избыток прибавленной кислоты может замедлить процесс образования берлинской лазури.

Выполнение реакции. К нескольким миллилитрам дистиллята, собранного в раствор щелочи, прибавляют 1--4 капли разбавленного раствора сульфата железа (II) и такой же объем разбавленного раствора хлорида железа (III). Смесь хорошо взбалтывают и нагревают на пламени газовой горелки почти до кипения, а затем охлаждают до комнатной температуры и прибавляют 10 %-й раствор соляной кислоты до слабокислой реакции на лакмус. Появление синего осадка или синей окраски указывает на наличие синильной кислоты (цианидов) в дистилляте.

Предел обнаружения: 20 мкг синильной кислоты в 1 мл раствора. Предельная концентрация 1: 100000. При количествах синильной кислоты, превышающих 30 мкг в 1 мл, образуется синий осадок. При наличии 20--30 мкг синильной кислоты в 1 мл появляется зеленая или голубоватая окраска. При малых количествах синильной кислоты в растворах синяя окраска появляется только через 24--48 ч. При длительном отсутствии синего осадка или синей окраски к смеси прибавляют 5 %-ый раствор хлорида бария. При этом выпадает осадок сульфата бария и происходит с осаждение берлинской лазури.

Осадок берлинской лазури может быть представлен судебно-следственным органам как доказательство наличия синильной кислоты или цианидов в исследуемых объектах.

Реакция образования роданида железа.

Эта реакция основана на том, что при нагревании цианидов с раствором полисульфида аммония образуется роданид, от прибавления к которому раствора хлорида железа(Ш) появляется кроваво-красная окраска:

Выполнение реакции. К 2--3 мл исследуемого раствора прибавляют 3--5 капель 10--20 %-го раствора полисульфида аммония и смесь упаривают на водяной бане до небольшого объема. К упаренной жидкости по каплям прибавляют 8 %-й раствор соляной кислоты до кислой реакции (по лакмусу), а затем прибавляют 1 каплю 10 %-го раствора хлорида железа (III). Появление кроваво-красной окраски указывает на наличие цианидов в растворе. При взбалтывании окрашенного раствора с диэтиловым эфиром окраска переходит в эфирный слой.

Предел обнаружения: 10 мкг синильной кислоты в 1 мл.

Реакция образования бензидиновой сини. Соли меди (II) с цианидами образуют дициан (CN) 2 , при взаимодействии которого с водой выделяется кислород, окисляющий бензидин.

продуктом окислениябензидина является бензидиновая синь:



Выполнение реакции. Для выполнения этой реакции пользуются индикаторной бумагой, смоченной смесью растворов ацетата меди и бензидина.

В колбу вносят 2--3 мл исследуемого раствора, к которому прибавляют 1 мл 10 %-го раствора винной кислоты. Колбу сразу же закрывают пробкой, к которой прикреплена влажная индикаторная бумага. Затемколбу нагревают несколько минут на водяной бане. При наличии синильной кислоты или ее солей в пробе бумага синеет.

Приготовление индикаторной бумаги (см. Приложение 1, реактив 6).

Реакция с пикриновой кислотой. От прибавления пикриновой кислоты и щелочи к цианидам образуется соль изопурпуровой кислоты, имеющая красную окраску:

Выполнение реакции. К 1 мл щелочного дистиллята прибавляют 1 мл 0,5 %-го раствора пикриновой кислоты и слегка нагревают на водяной бане. При наличии цианидов раствор приобретает красную окраску. Подобную окраску с пикриновой кислотой дают и некоторые другие вещества (альдегиды, ацетон, сульфиты и др.).

Поэтому реакция с пикриновой кислотой на цианиды имеет значение только при отсутствии цианидов в дистилляте.

Обнаружение цианидов методом микродиффузии. Синильную кислоту и ее соли можно обнаружить методом микродиффузии, который основан на реакции с пиридином и барбитуровой кислотой. Способ обнаружения цианидов методом микродиффузии описан выше (см. гл. III, § 3).

Сини́льная (циа́нистоводородная) кислота́ , цианистый водород , HCN - бесцветная, очень летучая, легкоподвижная ядовитая жидкость , имеющая характерный запах .

Синильная кислота содержится в некоторых растениях, коксовом газе , табачном дыме, выделяется при термическом разложении нейлона , полиуретанов . Смешивается во всех соотношениях с водой , этанолом , диэтиловым эфиром .

Энциклопедичный YouTube

    1 / 3

    ✪ СИНТЕЗ СИНИЛЬНОЙ КИСЛОТЫ

    ✪ ★ Вишневые косточки способствует укреплению стенок сосудов, предупреждают развитие анемии и диабета

    ✪ Черёмуха обыкновенная. Полезные, лечебные свойства черёмухи, применение в народной медицине

    Субтитры

Свойства

Химические

Молекула HCN сильно полярна (μ = 0,96⋅10 −29 Кл·м).

Безводный цианистый водород является сильно ионизирующим растворителем, растворённые в нём электролиты хорошо диссоциируют на ионы. Его относительная диэлектрическая проницаемость при 25 °C равна 107 (выше, чем у воды). Это обусловлено линейной ассоциацией полярных молекул HCN за счёт образования водородных связей .

R R ′ C = O + H C N → R R ′ C (O H) C N . {\displaystyle {\mathsf {RR"C\!=\!O+HCN\rightarrow RR"C(OH)CN}}.}

Действие на нервную систему

Действие на дыхательную систему

Действие на сердечно-сосудистую систему

Проникая в кровь, она снижает способность клеток воспринимать кислород из притекающей крови. А так как нервные клетки больше всех остальных нуждаются в кислороде, они первыми страдают от действия синильной кислоты. В начальном периоде интоксикации наблюдается замедление сердечного ритма . Повышение артериального давления и увеличение минутного объёма сердца происходят за счёт возбуждения синильной кислотой хеморецепторов каротидного синуса и клеток сосудодвигательного центра, с одной стороны, выброса катехоламинов из надпочечников и вследствие этого спазма сосудов - с другой. По мере развития отравления артериальное давление падает, пульс учащается, развивается острая сердечно-сосудистая недостаточность и наступает остановка сердца .

Изменения в системе крови

Биологическая роль

Известно также, что стимуляция мускариновых холинорецепторов клеток феохромоцитомы в культуре повышает образование ими эндогенной синильной кислоты, однако стимуляция мускариновых холинорецепторов ЦНС в живом организме крысы приводит, наоборот, к снижению образования эндогенной синильной кислоты .

Также показано, что синильная кислота выделяется лейкоцитами в процессе фагоцитоза и способна убивать патогенные микроорганизмы .

Получение

В настоящий момент существуют три наиболее распространённых метода получения синильной кислоты в промышленных масштабах:

  • Метод Андрусова: прямой синтез из аммиака и метана в присутствии воздуха и платинового катализатора при высокой температуре:

2 N H 3 + 2 C H 4 + 3 O 2 → P t 2 H C N + 6 H 2 O . {\displaystyle {\mathsf {2NH_{3}+2CH_{4}+3O_{2}{\xrightarrow {Pt}}2HCN+6H_{2}O}}.}

  • Метод BMA (Blausäure aus Methan und Ammoniak) , запатентованный фирмой Degussa : прямой синтез из аммиака и метана в присутствии платинового катализатора при высокой температуре:

N H 3 + C H 4 → P t H C N + 3 H 2 . {\displaystyle {\mathsf {NH_{3}+CH_{4}{\xrightarrow {Pt}}HCN+3H_{2}}}.}

  • Побочный продукт при производстве акрилонитрила путём окислительного аммонолиза пропилена.

Применение

В химическом производстве

Является сырьём для получения акрилонитрила , метилметакрилата , адипонитрила и других соединений. Синильная кислота и большое число её производных используются при извлечении благородных металлов из руд, при гальванопластическом золочении и серебрении, в производстве ароматических веществ, химических волокон, пластмасс, каучука , органического стекла, стимуляторов роста растений, гербицидов .

Как отравляющее веществo

2 K C N + O 2 ⟶ 2 K O C N {\displaystyle {\mathsf {2KCN+O_{2}\longrightarrow 2KOCN}}}

Многие металлы при действии избытка

Синильная кислота – это очень токсичный яд, отравление синильной кислотой приводит к летальному исходу. Цианистоводородная кислота содержит соли «цианиды», она бесцветна и имеет специфический запах горького миндаля.

Этот вид яда блокирует ферментативную активность организма, в связи с этим нарушается метаболизм и наступает кислородное голодание.

Где содержится синильная кислота

  1. В отдельных видах плодовых косточковых культур семейства розоцветных, это: вишня, черемуха, персик, абрикос, слива, горький миндаль, и даже яблоки;
  2. В инсектицидах против грызунов и насекомых;
  3. На различных химических вредных производствах;
  4. В табачном дыме;
  5. Ядро косточки абрикоса тоже содержит синильную кислоту.

Для предотвращения отравления синильной кислотой следует знать, где и в каком виде она может встретиться в повседневной жизни.


Очень часто можно услышать миф про отравление старым компотом (более 1 года) из фруктов, в котором случайным образом присутствовала минимум одна косточка. От части да, кислота становится активна во влажной среде, поэтому компот с косточками может нанести непоправимый вред организму человека.

Если варенье или компот содержат достаточное количество сахара – отравления не будет, т.к. сахар является антидотом и блокирует яд. Другой случай – когда в детстве многие из нас разбивали косточки от абрикоса и съедали то самое маленькое ядро, именно в нем в небольших дозах содержится синильная кислота. Дозой для отравления в таком случае может составлять примерно 100 серединок косточки абрикоса.

При обработке помещений инсектицидами против грызунов и вредителей, некоторые люди нарушают технику безопасности и подвергают свое здоровье риску плохо проветрив помещение после обработки. Такое действие недопустимо. Многие виды инсектицидов содержат в своем составе синильную кислоту – а как мы знаем: попадание этого яда в дыхательные пути может вызвать мгновенную мучительную смерть.


Не зря табачный дым так обсуждают и исследуют, ведь в его составе содержится огромное количество ядов, смол и вредных веществ в том числе и цианидов. Даже пассивное курение может поставить вас под негативное воздействие отравляющих веществ для вашего организма.

Последним местом контакта с цианистоводной кислотой может быть химическое предприятие в процессах которого задействован сложный процесс переработки пластмасс и руды.

Также подобную кислоту используют в фармацевтическом производстве. Кислоту используют в виде синильной соли. Нестойкие соединения во время контакта с кислородом или водой превращаются в яд. Попадание яда на кожу может нести за собой очень тяжелые последствия.

Как синильная кислота воздействует на человека

Кислота мгновенно вызывает гипоксию (пониженное содержание кислорода) и отмирание живых клеток. Также от яда страдает центральная нервная система, мозг, мышцы сердца, почек и печени.

Потерпевший приняв яд может получить мгновенный летальный исход. Все зависит от степени заражения и пути распространения яда. Пары синильной кислоты блокируют кислородный обмен организма и пострадавший получает мгновенное кислородное голодание.


При попадании на кожу яд впитывается и наносит непоправимый вред организму. При контакте с пострадавшим после отравления – избегайте тактильного прикосновения в места попадания яда, в качестве профилактики пользуйтесь резиновыми перчатками.

Повысить устойчивость организма к этому яду можно путем искусственного увеличения поступления кислорода в клетки, для этого рекомендуется вдыхать специальные воздушные смеси с кислородом.

В природе цианистоводная кислота выступает инсектицидом, она содержится в косточках растений и защищает плоды от вредителей. Данную кислоту очень часто добавляют в препараты против насекомых.

Симптомы отравления синильной кислотой

  1. Тошнота, рвота, понос;
  2. Дыхание пострадавшего напоминает запах горелого миндаля;
  3. Нарушение сердечного ритма, кислородное голодание, нарушение дыхания;
  4. Головная боль, головокружение, першение в горле;
  5. Боли в грудной клетке, тахикардия и слабый пульс.

Отравление синильной кислотой возможно при контакте с ядом: через воздух, пищу или прямой контакт с кожей. Самое быстрое отравление наступает при попадании паров кислоты в дыхательную систему человека, такое часто возникает у работников службы дезинсекции при несоблюдении мер безопасности и работников химических предприятий. При сильном отравлении наступает мгновенный летальный исход .

Если вы наблюдаете эти симптомы у пострадавшего – немедленно вызывайте скорую помощь и окажите первую помощь пострадавшему. Скорая доставит пострадавшего в токсикологическое отделение.


Последствия отравления – это потеря сознания, кома и смерть. Не паникуйте, а выполните все строго по пунктам, написанным ниже:

Первая помощь при отравлении синильной кислотой

  1. Определить очаг поражения и предотвратить его повторное повторение (вывести пострадавшего в безопасную зону; если отравление возникло вследствие попадания яда на кожу – снять одежду; если пострадавший отравился едой – ограничить повторное отравление). Дайте пострадавшему минимальное тепло и покой.
  2. Вызывайте скорую помощь, оператору назовите симптомы отравления, скажите, что произошел контакт с сенильной кислотой. Таким образом врачи перед выездом возьмут необходимые препараты;
  3. При пищевом отравлении при условии, что пострадавший в сознании — необходимо вызвать искусственную рвоту. Промыть желудок поставив клизму с 1% раствором марганцовки и с 1% раствором перекиси водорода;
  4. Если наблюдается легкое недомогание – дайте пострадавшему сорбент (активированный уголь, энтеросгель) или слабительное;
  5. Если пострадавший без сознания – немедленно положите его набок, такая поза предотвратит удушение от возможного попадания рвотных масс в дыхательный канал;
  6. При потере сознания – старайтесь вернуть человека в сознание, разрешается применять нашатырный спирт, массировать мочки ушей.

Антидот против цианистоводородной кислоты – тиосульфат натрия, сахар и нитроглицерин. Очень часто используют амилнитрит (попперс). Также практикуют вдыхание Амилнитрита и ставят капельницы/вводят Хромосмон вместе с Тиосульфатом натрия. Постепенно выводя токсины и очищают кровь от яда.


Как вызвать искусственную рвоту

Лечение отравления протекает довольно долго и болезненно. Так как яд наносит вред центральной нервной системе – возможны психологические срывы потерпевшего.

Для предотвращения отравления следует придерживаться элементарной техники безопасности при работе на предприятиях. Проходить все инструктажи и по первому требованию надевать средства индивидуальной защиты.

Цианид очень вредный и сильный яд, поэтому не нужно относиться к нему поверхностно и без уважения. При работе с цианидом будьте бдительны.

Если ваш ребенок начал употреблять в пищу серединки от косточек абрикоса – контролируйте какое количество он съедает. В этом нет ничего страшного, однако молодой и неподготовленный организм может существенно пострадать из-за жадности. Помните – для ребенка не более 10 серединок косточек в сутки, для взрослого не более 50, а лучше вообще их не кушать. Если очень хочется – замените их сладким миндалем. Будьте здоровы!



Похожие статьи