Реферат: Биологическое окисление. Биологическое окисление: суть процесса и его виды Стадии биологического окисления

Окисление биологическое (клеточное или тканевое дыхание) - это окислительно-восстановительные реакции, протекающие в клетках организма, в результате которых сложные органические вещества окисляются при участии специфических кислородом, доставляемым кровью. Конечными продуктами биологического окисления являются вода и . Освобождающаяся в процессе биологического окисления энергия частично выделяется в виде тепла, основная же ее часть идет на образование молекул сложных (главным образом аденозинтрифосфата - АТФ), которые являются источниками энергии, необходимой для жизнедеятельности организма.

При этом процесс окисления состоит в отнятии от окисляемого вещества (субстрата) электронов и равного им числа протонов. Субстратами биологического окисления являются продукты превращений жиров, белков и . Биологическое окисление субстратов до конечных продуктов осуществляется цепью последовательных реакций, в число промежуточных продуктов которых входят трикарбоновые кислоты - лимонная, цисаконитовая и изолимонная кислоты, поэтому вся цепь реакций носит название цикла трикарбоновых кислот, или цикла Кребса (по имени исследователя, установившего этот цикл).

Начальной реакцией цикла Кребса является конденсация щавелево-уксусной кислоты с активированной формой уксусной кислоты (ацетата), которая представляет собой соединение с коферментом ацетилирования - ацетил-КоА. В результате реакции образуется лимонная кислота, которая после четырехкратной дегидрогенизации (отщепление от молекулы 2 атомов водорода) и двукратного декарбоксилирования (отщепление молекулы CO 2) образует щавелевоуксусную кислоту. Источниками ацетил-КоА, использующегося в цикле Кребса, являются , - один из продуктов гликолиза (см.), жирные кислоты (см.) и пр. Наряду с окислением ацетил-КоА в цикле Кребса могут подвергаться окислению и другие вещества, способные превращаться в промежуточные продукты этого цикла, например многие из аминокислот, образующиеся при распаде белка. Ввиду обратимости большинства реакций цикла Кребса продукты распада белков, жиров и углеводов (интермедиаты) в нем могут не только окисляться, но и получаться при его обращении. Так осуществляется связь между обменом жиров, белков и углеводов.

Протекающие в цикле Кребса реакции окисления не сопровождаются, как правило, образованием богатых энергией соединений. Исключение представляет превращение сукцинил-КоА в сукцинат (см. Янтарная кислота), которое сопровождается образованием гуанозинтрифосфата. Большая часть АТФ образуется в цепи дыхательных ферментов (см.), где перенос электронов (а на первых этапах и протонов) к кислороду сопровождается выделением энергии.

Реакции отщепления водорода осуществляются ферментами класса дегидрогеназ, причем водорода (т. е. протоны + электроны) присоединяются к коферментам: никотинамидадениндинуклеотиду (НАД), никотинамидадениндинуклеотид-фосфату (НАДФ), флавинадениндинуклеотиду (ФАД) и др.

Процессы биологического окисления, связанные с циклом Кребса и цепью дыхательных ферментов, протекают преимущественно в митохондриях и локализованы на их мембранах.

Таким образом, процессы биологического окисления, связанные с циклом Кребса, имеют значение как при образовании соединений, богатых энергией, так и для осуществления связи углеводного, жирового и белкового обмена. Другие виды биологического окисления, по-видимому, имеют более узкое значение, например энергообеспечение клеток. Такова стадия гликолиза, заключающаяся в окислении ряда фосфорных соединений с одновременным восстановлением НАД и образованием АТФ или реакции пентозного цикла (т. е. окислительного превращения глюкозо-6-фосфата), сопровождающихся образованием фосфопентоз и восстановленного НАДФ. Пентозный цикл играет важную роль в тканях, характеризующихся интенсивно протекающими синтезами - нуклеиновых, жирных кислот, и пр. См. также Обмен веществ и энергии.

Окисление биологическое - это совокупность окислительно-восстановительных реакций, протекающих в биологических объектах. Под процессом окисления понимают потерю веществом электронов или электронов и протонов одновременно (потерю водородных атомов) или присоединение кислорода. Реакции противоположного направления характеризуют процесс восстановления. Восстановителями называют вещества, теряющие электроны, окислителями - вещества, приобретающие электроны. Окисление биологическое составляет основу тканевого, или клеточного, дыхания (процесса, в результате которого ткани и клетки поглощают кислород и выделяют углекислый газ и воду) - главного источника энергии для организма. Веществом, принимающим (акцептирующим) электроны, т. е. восстанавливающимся, является молекулярный кислород, превращающийся в анион кислорода O -- . Водородные атомы, отщепляемые от органического вещества - субстрата окисления (SH 2), превращаются при потере электронов в протоны или положительно заряженные катионы водорода:

В результате реакции между катионами водорода и анионами кислорода образуется вода, а реакция сопровождается выделением значительного количества энергии на каждые 18 г воды). В качестве побочного продукта биологического окисления образуется углекислый газ. Некоторые из реакций биологического окисления приводят к образованию перекиси водорода, под влиянием каталазы распадающейся на H 2 O и O 2 .

Поставщиками энергии в организме человека служат продукты питания - белки, жиры и углеводы. Однако эти вещества не могут служить субстратами биологического окисления. Они предварительно подвергаются расщеплению в пищеварительном тракте, где из белков образуются аминокислоты, из жиров - жирные кислоты и глицерин, из сложных углеводов - моносахариды, в первую очередь гексозы. Все эти соединения всасываются и поступают (прямо или через лимфатическую систему) в кровь. Вместе с аналогичными веществами, образованными в органах и тканях, они составляют «метаболический фонд», из которого организм черпает материал для биосинтезов и для удовлетворения энергетических запросов. Главными субстратами биологического окисления являются продукты тканевого обмена аминокислот, углеводов и жиров, получившие название веществ «лимоннокислого цикла». К ним относятся кислоты:
лимонная, цисаконитовая, изолимонная, щавелевоянтарная, α-кетоглютаровая, янтарная, фумаровая, яблочная, щавелевоуксусная.


Пировиноградная кислота СН 3 -СО-СООН не входит непосредственно в лимоннокислый цикл, но играет в нем существенную роль, как и продукт ее декарбоксилирования - активная форма уксусной кислоты СН 3 СОКоА (ацетил-коэнзим А).

Процессы, входящие в «лимоннокислый цикл» («цикл Кребса», «цикл трикарбоновых кислот»), протекают под действием ферментов, заключенных в клеточных органеллах, называемых митохондриями. Элементарный акт окисления любого вещества, входящего в лимоннокислый цикл,- это отнятие от этого вещества водорода, т. е. акт дегидрогенизации, обусловленный активностью соответствующего специфически действующего фермента дегидрогеназы (рис. 1).


Рис. 1. Схема лимоннокислого цикла Кребса.

Если процесс начинается с пировиноградной кислоты, то отщепление двух атомов водорода (2Н) в цикле Кребса повторяется 5 раз и сопровождается тремя последовательными этапами декарбоксилирования. Первый акт - дегидрогенизация - происходит при превращении пировиноградной кислоты в ацетил-КоА, конденсирующийся с щавелевоуксусной кислотой в лимонную. Второй раз дегидрогенизация приводит к образованию щавелевоянтарной кислоты из изолимонной. Третий акт - отщепление двух атомов водорода - связан с превращением кетоглютаровой кислоты в сукцинил-КоА; четвертый - с дегидрогенизацией янтарной кислоты и, наконец, пятый - с превращением яблочной кислоты в щавелевоуксусную, которая вновь может вступить в конденсацию с ацетил-КоА и обеспечить образование лимонной кислоты. При распаде сукцинил-КоА образуется богатая энергией связь (~Р) - это так называемое субстратное фосфорилирование: Сукцинил-КоА + Н 3 РО 4 + АДФ → янтарная кислота + КоА + АТФ.


Рис. 2. Схема дегидрогенизации субстратов лимоннокислого цикла специфическими ферментами, состоящими из диссоциирующих комплексов: белков - б1, б2, б3 и б4 с НАД и НАДН2 и белка б5, образующего комплекс с ФАД (сукциндегидрогеназу); ЦАК - цисаконитовая кислота.

Четыре из названных актов дегидрогенизации осуществляются при участии специфических дегидрогеназ, коферментом которых является никотинамидадениндинуклеотид (НАД). Один акт - превращение янтарной кислоты в фумаровую - происходит под влиянием сукциндегидрогеназы - флавопротеида I. В данном случае коферментом является флавинадениндинуклеотид (ФАД). В результате пяти повторных актов дегидрогенизации (рис. 2) при реакциях, происходящих в лимоннокислом цикле, образуются восстановленные формы коферментов: 4-НАДН2 1-ФАДН2. Дегидрогеназа восстановленного НАД, т. е. принимающая водород с НАДН2, принадлежит также к флавиновым ферментам - это флавопротеид II. Однако он отличается от сукциндегидрогеназы структурой как белка, так и флавинового компонента. Дальнейшее окисление восстановленных форм флавопротеидов I и II, содержащих ФАДН2, происходит при участии цитохромов (см.), представляющих собой сложные белки - хромопротеиды, содержащие в своем составе железопорфирины - гемы.

При окислении ФАДН2 пути протона и электронов расходятся: протоны поступают в окружающую среду в виде ионов водорода, а электроны через серию цитохромов (рис.3) передаются на кислород, превращая его в анион кислорода O -- . Между ФАДН2 и системой цитохромов, по-видимому, участвует еще один фактор - коэнзим Q. Каждое следующее звено в дыхательной цепи от НАДН2 до кислорода характеризуется более высоким окислительно-восстановительным потенциалом (см.). На протяжении всей дыхательной цепи от НАДН2 до ½O 2 потенциал меняется на 1,1 в (от -0,29в до+0,81в). При полном окислении, например пировиноградной кислоты, сопровождающемся пятикратным отщеплением водорода, энергетическая эффективность процесса составит около 275 ккал (55X5). Эта энергия не рассеивается полностью в виде тепла; примерно 50% ее аккумулируется в виде богатых энергией фосфорных соединений, главным образом аденозинтрифосфата (АТФ).

Процесс трансформации энергии окисления в богатые энергией связи (~Р) конечного фосфатного остатка молекулы АТФ локализован во внутренних митохондриальных мембранах и связан с определенными этапами переноса водорода и электронов по дыхательной цепи (рис. 4). Принято считать, что первое фосфорилирование связано с транспортом водорода от НАДН2 к ФАД, второе сопряжено с переносом электронов на цитохром c1 и, наконец, третье, менее всего изученное, расположено между цитохромами c и a.


Рис. 3. Схема передачи водорода и электронов по дыхательной цепи; Е0 - окислительно-восстановительный потенциал.


Рис. 4. Схема трансформации энергии окисления в богатые энергией связи ~ Р: KoQ - коэнзим Q; SH2 - субстрат окисления; цС1, цС, ц (А +А3) - цитохромы С1, С, (А + А3); J1, J2, J3 - специфические для данного звена дыхательной цепи соединения, участвующие в образовании богатых энергией связей; X - неспецифическое вещество, образующее богатые энергией связи с J1, J2, J3, сменяющее их на фосфатные остатки и передающее последние на аденозиндифосфорную кислоту (АДФ) с образованием АТФ.

Механизм образования богатых энергией связей еще не расшифрован. Выяснено, однако, что процесс складывается из нескольких промежуточных реакций (на рис. 4- от J~X до АТФ), лишь последней из которых является образование богатого энергией фосфатного остатка АТФ. Богатая энергией связь конечной фосфатной группы в АТФ оценивается в 8,5 ккал на грамм-молекулу (в физиологических условиях - около 10 ккал). При переносе водорода и электронов по дыхательной цепи, начиная с НАДН2 и кончая образованием воды, освобождается 55 ккал и аккумулируется в виде АТФ не менее 25,5 ккал (8,5X3). Следовательно, энергетическая эффективность процесса биологического окисления составляет около 50%.


Рис. 5. Схема использования энергии фосфатных связей АТФ (АМФ-Р~Р) для различных физиологических функций.

Биологический смысл фосфорилирующего окисления понятен (рис. 5): все процессы жизнедеятельности (мышечная работа, нервная деятельность, биосинтезы) требуют затраты энергии, края обеспечивается разрывом богатых энергией фосфатных связей (~Р). Биологический смысл нефосфорилирующего - свободного - окисления можно видеть в многочисленных реакциях окисления, не связанных с лимоннокислым циклом и переносом водорода и электронов по дыхательной цепи. Сюда относятся, например, все внемитохондриальные процессы окисления, окислительное удаление токсически действующих веществ и многие акты регуляции количественного содержания биологически активных соединений (некоторых аминокислот, биогенных аминов, адреналина, гистидина, серотонина и т. д., альдегидов и пр.) путем более или менее интенсивного их окисления. Соотношение свободного и фосфорилирующего окисления является также одним из путей терморегуляции у человека и теплокровных животных. См. также Обмен веществ и энергии.

Биологическое окисление , происходящее в живом организме, по сути, является процессом, обратным фотосинтезу. В ходе реакций биологического окисления высокоэнергетические электроны, нахо­дящиеся в молекулах углеводов и других биологических соедине­ний, скатываются на уровень с наименьшей энергией, когда свя­зываются с кислородом в молекуле воды. Энергия, отдаваемая ими при этом, используется для образования макроэргических фосфатных связей. Поток электронов, движущихся по ступеням процесса биологического окисления, - это не что иное, как слабый электрический ток.

Биологическое окисление это процесс окисления биологических веществ с выделением энергии.

Тканевое дыхание – процесс поглощения кислорода (О 2) тканями при окислении органического субстрата с выделением углекислого газа (СО 2) и воды (Н 2 О).

Главными источниками СО 2 является реакции декарбоксилирования пировиноградной и альфа-кетоглутаровой кислот. Еще один источник – это процесс декарбоксилирование аминокислот, который катализируется пиридоксаль-зависимыми ферментами.

Окислительное фосфорилирование это синтез АТФ сопряженный с тканевым дыханием.

Основным топливом при биологическом окислении является водород. Известно, что реакция окисление водорода кислородом в газовой среде сопровождается выделением большого количества энергии, сопровождаемым взрывом и пламенем. Эволюция живых организмов привела к тому, что реакция окисления водорода до воды оказалась разделенной на отдельные этапы, что обеспечивает постепенное высвобождение энергии в процессе биологического окисления. При этом часть полученной энергии рассеивается в виде тепла (около 60%) а другая часть (около 40%) аккумулируется в молекулах АТФ.

Макроэргические соединения – это вещества, содержащие богатые энергией связи.

Макроэргическая связь обозначается символом ∼ (знак «тильда»). Понятие макроэргическая связь довольно условно и применяется для обозначения тех связей, которые гидролизуются в водной среде с выделением значительной энергии. Так, гидролиз концевой фосфоангидридной связи АТФ (АТФ + Н 2 О → АДФ + Фн), ведет к освобождению 34,5 кДж/моль энергии).

Однако если реакция протекает в неводной среде (например, в липидном слое мембран), то образование и разрушение АТФ протекает без больших затрат энергии.

Вещества гидролиз которых, приводит к высвобождению более 21 кДж/моль энергии относят к высокоэнергетическим (макроэргам ), а вещества освобождающие меньшие количества энергии - к низкоэнергетическим. К макроэргам относят: АТФ, другие трифосфаты нуклеозидов (ГТФ, ЦТФ, УТФ, ТТФ), аргининфосфат, креатинфосфат, ацетилфосфат, 1,3дифосфоглицерат, фосфоенолпируват и др. К низкоэнергетическим - глюкозо-6-фосфат, глюкозо-1-фосфат, глицерофосфат и другие. Уникальная роль АТФ состоит в том, что она имеет промежуточное значение энергии гидролиза и выполняет роль связующего звена (разменной монеты) между высоко- и низкоэнергетическими соединениями.

УРАЛЬСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

Кафедра биоорганической и биологической химии

КУРСОВАЯ РАБОТА НА ТЕМУ:

Биологическое окисление.

Исполнители: студентки

педиатрического

факультета 223 группы

Заруба Н.С., Чащина Е.Е.

Руководитель: доцент,

к.м.н. Трубачев С.Д.

Рецензент:

Екатеринбург 2002.

I. Введение………………………………………………………………...3

II. Общие представления о биологическом окислении.

Окислительно-восстановительные системы и потенциалы……..3

III. Пути использования кислорода в клетке……………………………...5

Оксидазный путь использования кислорода. Митохондрии.

Ферменты, их локализация и значение в процессах окисления…….5

IV. Этапы утилизации энергии питательных веществ…………………...6

V. Окислительное фосфорилирование……………………………………9

Хемиосмотическая теория Митчелла……..……….………………..9

Редокс – цепь окислительного фосфорилирования………………10

VI. Цикл Кребса…………………………………………………………21

Открытие ЦТК……………………………………………………..22

Реакции, ферменты. Регуляция…………………………………...23

VII. Макроэргические соединения и связи……………………………...29

VIII. Витамин РР. Участие в процессах окисления…………………….30

IX. Микросомальное окисление…………………………………………31

Монооксигеназные реакции………………………………………31

Диоксигеназные реакции………………………………………….32

Цитохромы…………………………………………………………32

X. Пероксидазный путь использования кислорода…………………..33

XI. Ферментативная антиоксидантная защита…………………………34

Супероксиддисмутаза, каталазы, пероксидазы………………….34

XII. Неферментативная антиоксидантная защита………………………35

Витамины С, Е и Р…………………………………………….…...35

XIII. Заключение…………………………………………………………..38

XIV. Список литературы…………………………………………………..39

Введение.

В химии окисление определяется как удаление электронов, а восстановление - как присоединение электронов; это можно проиллюстрировать на примере окисления ферро-иона в ферри-ион:

Fe 2+ -e → Fe 3+

Отсюда следует, что окисление всегда сопровождается восстановлением акцептора электронов. Этот принцип окислительно-восстановительных процессов в равной мере применим к биохимическим системам и характеризует природу процессов биологического окисления.

Хотя некоторые бактерии (анаэробы) живут в отсутствие кислорода, жизнь высших животных полностью зависит от снабжения кислородом. Кислород, главным образом, используется в процессе дыхания – последнее можно определить как процесс улавливания клеточной энергии в виде АТФ при протекании контролируемого присоединения кислорода с водородом с образованием воды. Кроме того, молекулярный кислород включается в различные субстраты при участии ферментов, называемых оксигеназами. Многие лекарства, посторонние для организма вещества, канцерогены (ксенобиотики) атакуются ферментами этого класса, которые в совокупности получили название цитохрома Р 450 .

Гипоксические нарушения метаболизма клетки занимают ведущее место в патогенезе критических состояний. Главную роль в формировании необратимости патологических процессов приписывают крайним проявлениям расстройства клеточного метаболизма. Адекватное обеспечение клетки кислородом является основным условием сохранения ее жизнеспособности.

Введением кислорода можно спасти жизнь больных, у которых нарушено дыхание или кровообращение. В ряде случаев успешно применяется терапия кислородом под высоким давлением; следует однако отметить, что интенсивная или продолжительная терапия кислородом под высоким давлением может вызвать кислородное отравление.

При написании данной работы перед нами стояла цель: изучить биологическое окисление и его значение в жизнедеятельности клетки и организма в целом. Для этого мы рассмотрели:

Использование кислорода клеткой;

Источники энергии клетки – цикл лимонной кислоты (цикл Кребса), окислительное фосфорилирование;

Микросомальное окисление;

Антиоксидантную защиту

Общие представления о биологическом окислении.

Окислительно-восстановительные системы и потенциалы.

Источник энергии, используемый для выполнения всех видов работ (химической, механической, электрической и осмотической) – это энергия химической связи. Высвобождение энергии углеводов, жиров, белков и других органических соединений происходит при их окислительно-восстановительном распаде. Высвобожденная энергия затрачивается на синтез АТФ.

Изменение свободной энергии, характеризующее реакции окисления и восстановления, пропорционально способности реактантов отдавать или принимать электроны. Следовательно, изменение свободной энергии окислительно-восстановительного процесса можно характеризовать не только величиной DG 0 " , но и величиной окислительно-восстановительного потенциала системы (Ео). Обычно окислительно-восстановительный потенциал системы сравнивают с потенциалом водородного электрода, принимая последний за ноль, 0В при рН=0. Однако для биологических систем удобнее использовать окислительно-восстановительный потенциал при рН=7,0 (Ео"); при таком рН потенциал водородного электрода равен -0,42В.

Пользуясь таблицей 1, можно предсказать, в каком направлении пойдет поток электронов при сопряжении одной окислительно-восстановительной системы.

Таблица 1. Стандартные потенциалы некоторых окислительно-восстановительных систем.

Пути использования кислорода в клетке.

Существует три пути использования кислорода в клетке, которые характеризуются следующими реакциями:

1) оксидазный путь (90% поступившего кислорода восстанавливается до Н 2 О при участии фермента цитохромоксидазы)

0 2 +4е+4Н + → 2Н 2 О

2) оксигеназный путь (включение в субстрат одного атома кислорода - монооксигеназный путь, двух атомов кислорода -диоксигеназный путь) -монооксигеназный путь

Диоксигеназный путь

3) свободно-радикальный путь (идет без участия ферментов и АТФ не образуется).

Оксидазный путь использования кислорода. Митохондрии. Ферменты, их локализация и значение в процессе окисления.

Митохондрии справедливо называют "энергетическими станциями" клетки, поскольку именно в этих органеллах в основном происходит улавливание энергии, поставляемой окислительными процессами. Митохондриальную систему сопряжения окислительных процессов с генерацией высокоэнергетического интермедиатора АТФ называют окислительным фосфорилированием.

Митохондрии имеют наружную мембрану, проницаемую для большинства метаболитов, и избирательно проницаемую внутреннюю мембрану с множеством складок (крист), выступающих в сторону матрикса (внутреннего пространства митохондрий). Наружная мембрана может быть удалена путем обработки дигитонином; она характеризуется наличием моноаминоксидазы и некоторых других ферментов (например, ацил-КоА-синтетазы, глицерофосфат-ацилтрансферазы, моноацилглицерофосфат-ацилтрансферазы, фосфолипазы А2). В межмембранном пространстве находятся аденилаткиназа и креатинкиназа. Во внутренней мембране локализован фосфолипид кардиолипин.

В матриксе находятся растворимые ферменты цикла лимонной кислоты и ферменты b-окисления жирных кислот, в связи с этим возникает необходимость в механизмах транспорта метаболитов и нуклеотидов через внутреннюю мембрану. Сукцинатдегидрогеназа локализована на внутренней поверхности внутренней митохондриальной мембраны, где она передает восстановительные эквиваленты дыхательной цепи на уровне убихинона (минуя первую окислительно-восстановительную петлю). 3-гидроксибутиратдегид рогеназа локализована на матриксной стороне внутренней митохондриальной мембраны. Глицерол-3-фосфат-дегидрогеназа находится на наружной поверхности внутренней мембраны, где она участвует в функционировании глицерофосфатного челночного механизма.

Этапы утилизации энергии питательных веществ.

Утилизация энергии питательных веществ - сложный процесс, который протекает в три стадии, согласно следующей схеме:

Схема 1. Стадии катаболизма питательных веществ.

На стадии 1 крупные молекулы полимеров распадаются на мономерные субъединицы: белки на аминокислоты, полисахариды на сахара, а жиры на жирные кислоты и холестеоролы. Этот предварительный процесс, называемый пищеварением, осуществляется главным образом вне клеток под действием ферментов, секретируемых в полость пищеварительного тракта. На стадии 2 образовавшиеся небольшие молекулы поступают в клетки и подвергаются дальнейшему расщеплению в цитоплазме. Большая часть углеродных и водородных атомов сахаров превращается в пируват, который, проникнув в митохондрии, образует там ацетильную группу химически активного соединения ацетилкофермента А (ацетил-СоА). Большое количество ацетил-СоА образуется также при окислении жирных кислот. На стадии 3 происходит полное расщепление ацетильной группы ацетил-СоА до СО 2 и Н 2 О. Именно на этой заключительной стадии образуется большая часть АТФ. В серии сопряженных химических реакций больше половины той энергии, которую, согласно теоретическим расчетам, можно извлечь из углеводов и жиров при окислении их до Н 2 О и СО 2 , используется для осуществления энергетически невыгодной реакции Ф н + АДФ ® АТФ. Поскольку остальная часть энергии, высвобождающейся при окислении, выделяется клеткой в виде тепла, результатом образования АТФ является общее возрастание неупорядоченности Вселенной, что полностью соответствует второму закону термодинамики.

Без энергии невозможно существование ни одного живого существа. Ведь каждая химическая реакция, любой процесс требуют ее присутствия. Любому человеку легко понять это и почувствовать. Если весь день не употреблять пищу, то уже к вечеру, а возможно, и раньше, начнутся симптомы повышенной усталости, вялости, сила значительно уменьшится.

Каким же способом разные организмы приспособились к получению энергии? Откуда она берется и какие процессы при этом происходят внутри клетки? Попробуем разобраться в данной статье.

Получение энергии организмами

Каким бы способом ни потребляли существа энергию, в основе всегда лежат Примеры можно привести разные. Уравнение фотосинтеза, который осуществляют зеленые растения и некоторые бактерии − это тоже ОВР. Естественно, что процессы будут отличаться в зависимости от того, какое живое существо имеется в виду.

Так, все животные − это гетеротрофы. То есть такие организмы, которые не способны самостоятельно формировать внутри себя готовые органические соединения для дальнейшего их расщепления и высвобождения энергии химических связей.

Растения, напротив, являются самым мощным продуцентом органики на нашей планете. Именно они осуществляют сложный и важный процесс под названием фотосинтез, который заключается в формировании глюкозы из воды, углекислого газа под действием специального вещества − хлорофилла. Побочным продуктом является кислород, который является источником жизни для всех аэробных живых существ.

Окислительно-восстановительные реакции, примеры которых иллюстрируют данный процесс:

  • 6CO 2 + 6H 2 O = хлорофилл = C 6 H 10 O 6 + 6O 2 ;
  • диоксид углерода + под воздействием пигмента хлорофилла (фермент реакции) = моносахарид + свободный молекулярный кислород.

Также существуют и такие представители биомассы планеты, которые способны использовать энергию химических связей неорганических соединений. Их называют хемотрофы. К ним относят многие виды бактерий. Например, водородные микроорганизмы, окисляющие молекулы субстрата в почве. Процесс происходит по формуле: 2Н 2 +0 2 =2Н 2 0.

История развития знаний о биологическом окислении

Процесс, который лежит в основе получения энергии, сегодня вполне известен. окисление. Биохимия настолько подробно изучила тонкости и механизмы всех стадий действия, что загадок почти не осталось. Однако так было не всегда.

Первые упоминания о том, что внутри живых существ происходят сложнейшие преобразования, которые являются по природе химическими реакциями, появились примерно в XVIII веке. Именно в это время Антуан Лавуазье, знаменитый французский химик, обратил свое внимание на то, как схожи биологическое окисление и горение. Он проследил примерный путь поглощаемого при дыхании кислорода и пришел к выводу, что внутри организма происходят процессы окисления, только более медленные, чем снаружи при горении различных веществ. То есть окислитель − молекулы кислорода − вступают в реакцию с органическими соединениями, а конкретно, с водородом и углеродом из них, и происходит полное превращение, сопровождающееся разложением соединений.

Однако, хоть данное предположение по сути своей вполне реально, непонятными оставались многие вещи. Например:

  • раз процессы схожи, то и условия их протекания должны быть идентичными, но окисление происходит при низкой температуре тела;
  • действие не сопровождается выбросом колоссального количества тепловой энергии и не происходит образования пламени;
  • в живых существах не менее 75-80% воды, но это не мешает «горению» питательных веществ в них.

Чтобы ответить на все эти вопросы и понять, что на самом деле представляет собой биологическое окисление, понадобился не один год.

Существовали разные теории, которые подразумевали важность наличия в процессе кислорода и водорода. Самые распространенные и наиболее успешные были:

  • теория Баха, именуемая перекисной;
  • теория Палладина, основывающаяся на таком понятии, как «хромогены».

В дальнейшем было еще много ученых, как в России, так и других странах мира, которые постепенно вносили дополнения и изменения в вопрос о том, что же такое биологическое окисление. Биохимия современности, благодаря их трудам, может рассказать о каждой реакции этого процесса. Среди самых известных имен в этой области можно назвать следующие:

  • Митчелл;
  • С. В. Северин;
  • Варбург;
  • В. А. Белицер;
  • Ленинджер;
  • В. П. Скулачев;
  • Кребс;
  • Грин;
  • В. А. Энгельгардт;
  • Кейлин и другие.

Виды биологического окисления

Можно выделить два основных типа рассматриваемого процесса, которые протекают при разных условиях. Так, самый распространенный у многих видов микроорганизмов и грибков способ преобразования получаемой пищи − анаэробный. Это биологическое окисление, которое осуществляется без доступа кислорода и без его участия в какой-либо форме. Подобные условия создаются там, куда нет доступа воздуху: под землей, в гниющих субстратах, илах, глинах, болотах и даже в космосе.

Этот вид окисления имеет и другое название − гликолиз. Он же является одной из стадий более сложного и трудоемкого, но энергетически богатого процесса − аэробного преобразования или тканевого дыхания. Это уже второй тип рассматриваемого процесса. Он происходит во всех аэробных живых существах-гетеротрофах, которые для дыхания используют кислород.

Таким образом, виды биологического окисления следующие.

  1. Гликолиз, анаэробный путь. Не требует присутствия кислорода и заканчивается разными формами брожения.
  2. Тканевое дыхание (окислительное фосфорилирование), или аэробный вид. Требует обязательного наличия молекулярного кислорода.

Участники процесса

Перейдем к рассмотрению непосредственно самих особенностей, которые заключает в себе биологическое окисление. Определим основные соединения и их аббревиатуры, которые в дальнейшем будем использовать.

  1. Ацетилкоэнзим-А (ацетил-КоА) − конденсат щавелевой и уксусной кислоты с коферментом, формирующийся на первой стадии цикла трикарбоновых кислот.
  2. Цикл Кребса (цикл лимонной кислоты, трикарбоновых кислот) − ряд сложных последовательных окислительно-восстановительных преобразований, сопровождающихся высвобождением энергии, восстановлением водорода, образованием важных низкомолекулярных продуктов. Является главным звеном ката- и анаболизма.
  3. НАД и НАД*Н − фермент-дегидрогеназа, расшифровывающийся как никотинамидадениндинуклеотид. Вторая формула − это молекула с присоединенным водородом. НАДФ - никотинамидадениндинуклетид-фосфат.
  4. ФАД и ФАД*Н − флавинадениндинуклеотид - кофермент дегидрогеназ.
  5. АТФ − аденозинтрифосфорная кислота.
  6. ПВК − пировиноградная кислота или пируват.
  7. Сукцинат или янтарная кислота, Н 3 РО 4 − фосфорная кислота.
  8. ГТФ − гуанозинтрифосфат, класс пуриновых нуклеотидов.
  9. ЭТЦ − электроно-транспортная цепь.
  10. Ферменты процесса: пероксидазы, оксигеназы, цитохромоксидазы, флавиновые дегидрогеназы, различные коферменты и прочие соединения.

Все эти соединения являются непосредственными участниками процесса окисления, которое происходит в тканях (клетках) живых организмов.

Стадии биологического окисления: таблица

Стадия Процессы и значение
Гликолиз Суть процесса заключается в бескислородном расщеплении моносахаридов, которое предшествует процессу клеточного дыхания и сопровождается выходом энергии, равным двум молекулам АТФ. Также образуется пируват. Это начальная стадия для любого живого организма гетеротрофа. Значение в образовании ПВК, который поступает на кристы митохондрий и является субстратом для тканевого окисления кислородным путем. У анаэробов после гликолиза наступают процессы брожения разного типа.
Окисление пирувата Этот процесс заключается в преобразовании ПВК, образовавшейся в ходе гликолиза, в ацетил-КоА. Он осуществляется при помощи специализированного ферментного комплекса пируватдегидрогеназы. Результат − молекулы цетил-КоА, которые вступают в В этом же процессе осуществляется восстановление НАД до НАДН. Место локализации − кристы митохондрий.
Распад бета-жирных кислот Этот процесс осуществляется параллельно с предыдущим на кристах митохондрий. Суть его в том, чтобы переработать все жирные кислоты в ацетил-КоА и поставить его в цикл трикарбоновых кислот. При этом также восстанавливается НАДН.
Цикл Кребса

Начинается с превращения ацетил-КоА в лимонную кислоту, которая и подвергается дальнейшим преобразованиям. Одна из важнейших стадий, которые включает в себя биологическое окисление. Данная кислота подвергается:

  • дегидрированию;
  • декарбоксилированию;
  • регенерации.

Каждый процесс совершается несколько раз. Результат: ГТФ, диоксид углерода, восстановленная форма НАДН и ФАДН 2 . При этом ферменты биологического окисления свободно располагаются в матриксе митохондриальных частиц.

Окислительное фосфорилирование

Это последняя стадия преобразования соединений в организмах эукариот. При этом происходит преобразование аденозиндифосфата в АТФ. Энергия, необходимая для этого, берется при окислении тех молекул НАДН и ФАДН 2 , которые сформировались на предыдущих стадиях. Путем последовательных переходов по ЭТЦ и понижением потенциалов происходит заключение энергии в макроэргические связи АТФ.

Это все процессы, которые сопровождают биологическое окисление при участии кислорода. Естественно, что описаны они не полностью, а лишь по сущности, так как для подробного описания нужна целая глава книги. Все биохимические процессы живых организмов чрезвычайно многогранны и сложны.

Окислительно-восстановительные реакции процесса

Окислительно-восстановительные реакции, примеры которых могут проиллюстрировать описанные выше процессы окисления субстрата, следующие.

  1. Гликолиз: моносахарид (глюкоза) + 2НАД + + 2АДФ = 2ПВК + 2АТФ + 4Н + + 2Н 2 О + НАДН.
  2. Окисление пирувата: ПВК + фермент = диоксид углерода + ацетальдегид. Затем следующий этап: ацетальдегид + Кофермент А = ацетил-КоА.
  3. Множество последовательных преобразований лимонной кислоты в цикле Кребса.

Данные окислительно-восстановительные реакции, примеры которых приведены выше, отражают суть происходящих процессов лишь в общем виде. Известно, что соединения, о которых идет речь, относятся к высокомолекулярным, либо имеющим большой углеродный скелет, поэтому изобразить все полными формулами просто не представляется возможным.

Энергетический выход тканевого дыхания

По приведенным выше описаниям очевидно, что подсчитать суммарный выход всего окисления по энергии несложно.

  1. Две молекулы АТФ дает гликолиз.
  2. Окисление пирувата 12 молекул АТФ.
  3. 22 молекулы приходится на цикл трикарбоновых кислот.

Итог: полное биологическое окисление по аэробному пути дает выход энергии, равный 36 молекулам АТФ. Значение биологического окисления очевидно. Именно эта энергия используется живыми организмами для жизни и функционирования, а также для согревания своего тела, движения и прочих необходимых вещей.

Анаэробное окисление субстрата

Второй вид биологического окисления − анаэробный. То есть тот, что осуществляется у всех, но на котором останавливаются микроорганизмы определенных видов. и именно с него четко прослеживаются различия в дальнейшем преобразовании веществ между аэробами и анаэробами.

Стадии биологического окисления по данному пути немногочисленны.

  1. Гликолиз, то есть окисление молекулы глюкозы до пирувата.
  2. Брожение, приводящее к регенерации АТФ.

Брожение может быть разных типов, в зависимости от организмов, его осуществляющих.

Молочнокислое брожение

Осуществляется молочнокислыми бактериями, а также некоторыми грибками. Суть состоит в восстановлении ПВК до молочной кислоты. Этот процесс используют в промышленности для получения:

  • кисломолочных продуктов;
  • квашеных овощей и фруктов;
  • силоса для животных.

Этот вид брожения является одним из самых применяемых в нуждах человека.

Спиртовое брожение

Известно людям с самой древности. Суть процесса заключается в превращении ПВК в две молекулы этанола и две диоксида углерода. Благодаря такому выходу продукта, данный вид брожения используют для получения:

  • хлеба;
  • вина;
  • пива;
  • кондитерских изделий и прочего.

Осуществляют его грибы дрожжи и микроорганизмы бактериальной природы.

Маслянокислое брожение

Достаточно узкоспецифичный вид брожения. Осуществляется бактериями рода Клостридиум. Суть состоит в превращении пирувата в масляную кислоту, придающую продуктам питания неприятный запах и прогорклый вкус.

Поэтому реакции биологического окисления, идущие по такому пути, практически не используют в промышленности. Однако эти бактерии самостоятельно засевают продукты питания и наносят вред, понижая их качество.



Похожие статьи